1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
//! A `Vec<T>`-like collection which guarantees stable indices and features
//! O(1) deletion of elements.
//!
//! This crate provides a simple stable vector implementation. You can find
//! nearly all the relevant documentation on
//! [the type `StableVec`](struct.StableVec.html).
//!
//! ---
//!
//! In order to use this crate, you have to include it into your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! stable_vec = "0.2"
//! ```
//!
//! ... as well as declare it at your crate root:
//!
//! ```ignore
//! extern crate stable_vec;
//!
//! use stable_vec::StableVec;
//! ```

#![deny(missing_debug_implementations)]

extern crate bit_vec;
#[cfg(test)]
#[macro_use]
extern crate quickcheck;

use bit_vec::BitVec;

use std::fmt;
use std::iter::FromIterator;
use std::mem;
use std::io;
use std::ops::{Index, IndexMut};
use std::ptr;

#[cfg(test)]
mod tests;


/// A `Vec<T>`-like collection which guarantees stable indices and features
/// O(1) deletion of elements.
///
/// # Why?
///
/// The standard `Vec<T>` always stores all elements contiguous. While this has
/// many advantages (most notable: cache friendliness), it has the disadvantage
/// that you can't simply remove an element from the middle; at least not
/// without shifting all elements after it to the left. And this has two major
/// drawbacks:
///
/// 1. It has a linear O(n) time complexity
/// 2. It invalidates all indices of the shifted elements
///
/// Invalidating an index means that a given index `i` who referred to an
/// element `a` before, now refers to another element `b`. On the contrary, a
/// *stable* index means, that the index always refers to the same element.
///
/// Stable indices are needed in quite a few situations. One example are
/// graph data structures (or complex data structures in general). Instead of
/// allocating heap memory for every node and edge, all nodes are stored in a
/// vector and all edges are stored in a vector. But how does the programmer
/// unambiguously refer to one specific node? A pointer is not possible due to
/// the reallocation strategy of most dynamically growing arrays (the pointer
/// itself is not *stable*). Thus, often the index is used.
///
/// But in order to use the index, it has to be stable. This is one example,
/// where this data structure comes into play.
///
///
/// # How?
///
/// Actually, the implementation of this stable vector is very simple. We can
/// trade O(1) deletions and stable indices for a higher memory consumption.
///
/// When `StableVec::remove()` is called, the element is just marked as
/// "deleted", but no element is actually touched. This has the very obvious
/// disadvantage that deleted objects just stay in memory and waste space. This
/// is also the most important thing to understand:
///
/// The memory requirement of this data structure is `O(|inserted elements|)`;
/// instead of `O(|inserted elements| - |removed elements|)`. The latter is the
/// memory requirement of normal `Vec<T>`. Thus, if deletions are far more
/// numerous than insertions in your situation, then this data structure is
/// probably not fitting your needs.
///
///
/// # Why not?
///
/// As mentioned above, this data structure is very simple and has many
/// disadvantages on its own. Here are some reason not to use it:
///
/// - You don't need stable indices or O(1) removal
/// - Your deletions significantly outnumber your insertions
/// - You want to choose your keys/indices
/// - Lookup times do not matter so much to you
///
/// Especially in the last two cases, you could consider using a `HashMap` with
/// integer keys, best paired with a fast hash function for small keys.
///
/// If you not only want stable indices, but stable pointers, you might want
/// to use something similar to a linked list. Although: think carefully about
/// your problem before using a linked list.
///
///
/// # Note
///
/// This type's interface is very similar to the `Vec<T>` interface
/// from the Rust standard library. When in doubt about what a method is doing,
/// please consult [the official `Vec<T>` documentation][vec-doc] first.
///
/// [vec-doc]: https://doc.rust-lang.org/stable/std/vec/struct.Vec.html
///
///
/// # Method overview
///
/// (*there are more methods than mentioned in this overview*)
///
/// **Associated functions**
///
/// - [`new()`](#method.new)
/// - [`with_capacity()`](#method.with_capacity())
///
/// **Adding and removing elements**
///
/// - [`push()`](#method.push)
/// - [`pop()`](#method.pop)
/// - [`remove()`](#method.remove)
///
/// **Accessing elements**
///
/// - [`get()`](#method.get) (returns `Option<&T>`)
/// - [the `[]` index operator](#impl-Index<usize>) (returns `&T`)
/// - [`get_mut()`](#method.get_mut) (returns `Option<&mut T>`)
/// - [the mutable `[]` index operator](#impl-IndexMut<usize>) (returns `&mut T`)
/// - [`remove()`](#method.remove) (returns `Option<T>`)
///
/// **Stable vector specific**
///
/// - [`has_element_at()`](#method.has_element_at)
/// - [`next_index()`](#method.next_index)
/// - [`is_compact()`](#method.is_compact)
/// - [`make_compact()`](#method.make_compact)
/// - [`reordering_make_compact()`](#method.reordering_make_compact)
///
/// **Number of elements**
///
/// - [`is_empty()`](#method.is_empty)
/// - [`num_elements()`](#method.num_elements)
///
/// **Capacity management**
///
/// - [`capacity()`](#method.capacity)
/// - [`shrink_to_fit()`](#method.shrink_to_fit)
/// - [`reserve()`](#method.reserve)
///
#[derive(Clone, PartialEq, Eq)]
pub struct StableVec<T> {
    /// Storing the actual data.
    data: Vec<T>,

    /// A flag for each element saying whether the element was removed.
    deleted: BitVec,

    /// A cached value equal to `self.deleted.iter().filter(|&b| !b).count()`
    used_count: usize,
}

impl<T> StableVec<T> {
    /// Constructs a new, empty `StableVec<T>`.
    ///
    /// The stable-vector will not allocate until elements are pushed onto it.
    pub fn new() -> Self {
        Self {
            data: Vec::new(),
            deleted: BitVec::new(),
            used_count: 0,
        }
    }

    /// Constructs a new, empty `StableVec<T>` with the specified capacity.
    ///
    /// The stable-vector will be able to hold exactly `capacity` elements
    /// without reallocating. If `capacity` is 0, the stable-vector will not
    /// allocate any memory.
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            data: Vec::with_capacity(capacity),
            deleted: BitVec::with_capacity(capacity),
            used_count: 0,
        }
    }

    /// Creates a `StableVec<T>` from the given `Vec<T>`. The elements are not
    /// copied and the indices of the vector are preserved.
    ///
    /// Note that this function will still allocate memory to store meta data.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from_vec(vec!['★', '♥']);
    ///
    /// assert_eq!(sv.get(0), Some(&'★'));
    /// assert_eq!(sv.get(1), Some(&'♥'));
    /// assert_eq!(sv.num_elements(), 2);
    /// assert!(sv.is_compact());
    ///
    /// sv.remove(0);
    /// assert_eq!(sv.get(1), Some(&'♥'));
    /// ```
    pub fn from_vec(vec: Vec<T>) -> Self {
        Self {
            used_count: vec.len(),
            deleted: BitVec::from_elem(vec.len(), false),
            data: vec,
        }
    }

    /// Reserves capacity for at least `additional` more elements to be
    /// inserted.
    pub fn reserve(&mut self, additional: usize) {
        self.data.reserve(additional);
        self.deleted.reserve(additional);
    }

    /// Appends a new element to the back of the collection and returns the
    /// index of the inserted element.
    ///
    /// The inserted element will always be accessable via the returned index.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::new();
    /// let star_idx = sv.push('★');
    /// let heart_idx = sv.push('♥');
    ///
    /// assert_eq!(sv.get(heart_idx), Some(&'♥'));
    ///
    /// // After removing the star we can still use the heart's index to access
    /// // the element!
    /// sv.remove(star_idx);
    /// assert_eq!(sv.get(heart_idx), Some(&'♥'));
    /// ```
    pub fn push(&mut self, elem: T) -> usize {
        self.data.push(elem);
        self.deleted.push(false);
        self.used_count += 1;
        self.data.len() - 1
    }

    /// Removes and returns the last element from this collection, or `None` if
    /// it's empty.
    ///
    /// This method uses exactly the same deletion strategy as
    /// [`remove()`](#method.remove).
    ///
    /// # Note
    ///
    /// This method needs to find index of the last valid element. Finding it
    /// has a worst case time complexity of O(n). If you already know the
    /// index, use [`remove()`](#method.remove) instead.
    pub fn pop(&mut self) -> Option<T> {
        let last_index = self.deleted
            .iter()
            .enumerate()
            .rev()
            .find(|&(_, deleted)| !deleted)
            .map(|(i, _)| i)
            .unwrap_or(0);
        self.remove(last_index)
    }

    /// Inserts the given value at the given index if there is a hole there.
    ///
    /// If there is an element marked as "deleted" at `index`, the `elem` is
    /// inserted at that position and `Ok(())` is returned. If `index` is out of
    /// bounds or there is an existing element at that position, the vector is
    /// not changed and `elem` is returned as `Err(elem)`.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::new();
    /// let star_idx = sv.push('★');
    /// let heart_idx = sv.push('♥');
    ///
    /// // Inserting fails: there isn't a hole yet.
    /// assert_eq!(sv.insert_into_hole(star_idx, 'x'), Err('x'));
    /// assert_eq!(sv.num_elements(), 2);
    ///
    /// // After removing the star...
    /// sv.remove(star_idx);
    /// assert_eq!(sv.num_elements(), 1);
    ///
    /// // ...we can insert a new element at its place.
    /// assert_eq!(sv.insert_into_hole(star_idx, 'x'), Ok(()));
    /// assert_eq!(sv[star_idx], 'x');
    /// assert_eq!(sv.num_elements(), 2);
    /// ```
    pub fn insert_into_hole(&mut self, index: usize, elem: T) -> Result<(), T> {
        // If the index is out of bounds or if the element at the given index
        // has not been marked as deleted, we cannot insert the new element.
        if index >= self.data.len() || !self.deleted[index] {
            Err(elem)
        } else {
            // We overwrite the removed element with the new one
            unsafe {
                ptr::write(&mut self.data[index], elem);
                self.deleted.set(index, false);
            }
            self.used_count += 1;

            Ok(())
        }
    }

    /// Grows the size of the stable vector by inserting deleted elements.
    ///
    /// This method does not add existing elements, but merely "deleted" ones.
    /// Using this only makes sense when you are intending to use the holes
    /// with [`insert_into_hole()`](#method.insert_into_hole) later. Otherwise,
    /// this method will just waste memory.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::new();
    /// let star_idx = sv.push('★');
    ///
    /// // After we inserted one element, the next element sits at index 1, as
    /// // expected.
    /// assert_eq!(sv.next_index(), 1);
    ///
    /// sv.grow(2); // insert two deleted elements
    ///
    /// assert_eq!(sv.num_elements(), 1); // Still only one existing element
    /// assert_eq!(sv.next_index(), 3); // Due to grow(2), we skip two indices
    ///
    /// // Now we can insert an element at index 2.
    /// sv.insert_into_hole(2, 'x').unwrap();
    /// assert_eq!(sv.num_elements(), 2);
    /// ```
    pub fn grow(&mut self, count: usize) {
        self.data.reserve(count);
        let new_len = self.data.len() + count;

        unsafe {
            self.deleted.grow(count, true);
            self.data.set_len(new_len);
        }
    }

    /// Removes and returns the element at position `index` if there exists an
    /// element at that index (as defined by
    /// [`has_element_at()`](#method.has_element_at)).
    ///
    /// Removing an element only marks it as "deleted" without touching the
    /// actual data. In particular, the elements after the given index are
    /// **not** shifted to the left. Thus, the time complexity of this method
    /// is O(1).
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::new();
    /// let star_idx = sv.push('★');
    /// let heart_idx = sv.push('♥');
    ///
    /// assert_eq!(sv.remove(star_idx), Some('★'));
    /// assert_eq!(sv.remove(star_idx), None); // the star was already removed
    ///
    /// // We can use the heart's index here. It has not been invalidated by
    /// // the removal of the star.
    /// assert_eq!(sv.remove(heart_idx), Some('♥'));
    /// assert_eq!(sv.remove(heart_idx), None); // the heart was already removed
    /// ```
    pub fn remove(&mut self, index: usize) -> Option<T> {
        if self.has_element_at(index) {
            // We move the requested element out of our `data` vector. Usually,
            // it's impossible to move out of a vector without removing the
            // element in the vector. We can achieve it by using unsafe code:
            // We just read the value from the vector without changing
            // anything. This is dangerous if we try to access this element
            // in the vector later. To prevent any access, we mark the element
            // as deleted.
            let elem = unsafe {
                self.deleted.set(index, true);
                ptr::read(&self.data[index])
            };
            self.used_count -= 1;
            Some(elem)
        } else {
            None
        }
    }

    /// Returns a reference to the element at the given index, or `None` if
    /// there exists no element at that index.
    ///
    /// If you are calling `unwrap()` on the result of this method anyway,
    /// rather use the index operator instead: `stable_vec[index]`.
    pub fn get(&self, index: usize) -> Option<&T> {
        if self.has_element_at(index) {
            Some(&self.data[index])
        } else {
            None
        }
    }

    /// Returns a mutable reference to the element at the given index, or
    /// `None` if there exists no element at that index.
    ///
    /// If you are calling `unwrap()` on the result of this method anyway,
    /// rather use the index operator instead: `stable_vec[index]`.
    pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
        if self.has_element_at(index) {
            Some(&mut self.data[index])
        } else {
            None
        }
    }

    /// Returns `true` if there exists an element at the given index, `false`
    /// otherwise.
    ///
    /// An element is said to exist if the index is not out of bounds and the
    /// element at the given index was not removed yet.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::new();
    /// assert!(!sv.has_element_at(3));         // no: index out of bounds
    ///
    /// let heart_idx = sv.push('♥');
    /// assert!(sv.has_element_at(heart_idx));  // yes
    ///
    /// sv.remove(heart_idx);
    /// assert!(!sv.has_element_at(heart_idx)); // no: was removed
    /// ```
    pub fn has_element_at(&self, index: usize) -> bool {
        index < self.data.len() && !self.deleted[index]
    }

    /// Calls `shrink_to_fit()` on the underlying `Vec<T>`.
    ///
    /// Note that this does not move existing elements around and thus does
    /// not invalidate indices. It only calls `shrink_to_fit()` on the
    /// `Vec<T>` that holds the actual data.
    ///
    /// If you want to compact this `StableVec` by removing deleted elements,
    /// use the method [`make_compact()`](#method.make_compact) instead.
    pub fn shrink_to_fit(&mut self) {
        self.data.shrink_to_fit();
    }

    /// Rearranges elements to reclaim memory. **Invalidates indices!**
    ///
    /// After calling this method, all existing elements stored contiguously
    /// in memory. You might want to call [`shrink_to_fit()`](#method.shrink_to_fit)
    /// afterwards to actually free memory previously used by removed elements.
    /// This method itself does not deallocate any memory.
    ///
    /// In comparison to
    /// [`reordering_make_compact()`](#method.reordering_make_compact), this
    /// method does not change the order of elements. Due to this, this method
    /// is a bit slower.
    ///
    /// # Warning
    ///
    /// This method invalidates the indices of all elements that are stored
    /// after the first hole in the stable vector!
    pub fn make_compact(&mut self) {
        if self.is_compact() {
            return;
        }

        // We only have to move elements, if we have any.
        if self.used_count > 0 {
            // We have to find the position of the first hole. We know that
            // there is at least one hole, so we can unwrap.
            let first_hole_index = self.deleted.iter().position(|d| d).unwrap();

            // This variable will store the first possible index of an element
            // which can be inserted in the hole.
            let mut element_index = first_hole_index + 1;

            // Beginning from the first hole, we have to fill each index with
            // a new value. This is required to keep the order of elements.
            for hole_index in first_hole_index..self.used_count {
                // Actually find the next element which we can use to fill the
                // hole. Note that we do not check if `element_index` runs out
                // of bounds. This will never happen! We do have enough
                // elements to fill all holes. And once all holes are filled,
                // the outer loop will stop.
                while self.deleted[element_index] {
                    element_index += 1;
                }

                // So at this point `hole_index` points to a valid hole and
                // `element_index` points to a valid element. Time to swap!
                self.data.swap(hole_index, element_index);
                self.deleted.set(hole_index, false);
                self.deleted.set(element_index, true);
            }
        }

        // We can safely call `set_len()` here: all elements that still need
        // to be dropped are in the range 0..self.used_count.
        unsafe {
            self.data.set_len(self.used_count);
            self.deleted.set_len(self.used_count);
        }
    }

    /// Rearranges elements to reclaim memory. **Invalidates indices and
    /// changes the order of the elements!**
    ///
    /// After calling this method, all existing elements stored contiguously
    /// in memory. You might want to call [`shrink_to_fit()`](#method.shrink_to_fit)
    /// afterwards to actually free memory previously used by removed elements.
    /// This method itself does not deallocate any memory.
    ///
    /// If you do need to preserve the order of elements, use
    /// [`make_compact()`](#method.make_compact) instead. However, if you don't
    /// care about element order, you should prefer using this method, because
    /// it is faster.
    ///
    /// # Warning
    ///
    /// This method invalidates the indices of all elements that are stored
    /// after the first hole and it does not preserve the order of elements!
    pub fn reordering_make_compact(&mut self) {
        if self.is_compact() {
            return;
        }

        // We only have to move elements, if we have any.
        if self.used_count > 0 {
            // We use two indices:
            //
            // - `hole_index` starts from the front and searches for a hole
            //   that can be filled with an element.
            // - `element_index` starts from the back and searches for an
            //   element.
            let len = self.data.len();
            let mut element_index = len - 1;
            let mut hole_index = 0;
            loop {
                // Advance `element_index` until we found an element.
                while element_index > 0 && self.deleted[element_index] {
                    element_index -= 1;
                }

                // Advance `hole_index` until we found a hole.
                while hole_index < len && !self.deleted[hole_index] {
                    hole_index += 1;
                }

                // If both indices passed each other, we can stop. There are no
                // holes left of `hole_index` and no element right of
                // `element_index`.
                if hole_index > element_index {
                    break;
                }

                // We found an element and a hole left of the element. That
                // means that we can swap.
                self.data.swap(hole_index, element_index);
                self.deleted.set(hole_index, false);
                self.deleted.set(element_index, true);
            }
        }

        // We can safely call `set_len()` here: all elements that still need
        // to be dropped are in the range 0..self.used_count.
        unsafe {
            self.data.set_len(self.used_count);
            self.deleted.set_len(self.used_count);
        }
    }

    /// Returns `true` if all existing elements are stored contiguously from
    /// the beginning.
    ///
    /// This method returning `true` means that no memory is wasted for removed
    /// elements.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&[0, 1, 2, 3, 4]);
    /// assert!(sv.is_compact());
    ///
    /// sv.remove(1);
    /// assert!(!sv.is_compact());
    /// ```
    pub fn is_compact(&self) -> bool {
        self.used_count == self.data.len()
    }

    /// Returns the number of existing elements in this collection.
    ///
    /// As long as `remove()` is never called, `num_elements()` equals
    /// `next_index()`. Once it is called, `num_elements()` will always be less
    /// than `next_index()` (assuming `make_compact()` is not called).
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::new();
    /// assert_eq!(sv.num_elements(), 0);
    ///
    /// let heart_idx = sv.push('♥');
    /// assert_eq!(sv.num_elements(), 1);
    ///
    /// sv.remove(heart_idx);
    /// assert_eq!(sv.num_elements(), 0);
    /// ```
    pub fn num_elements(&self) -> usize {
        self.used_count
    }

    /// Returns `true` if this collection doesn't contain any existing
    /// elements.
    ///
    /// This means that `is_empty()` returns true iff no elements were inserted
    /// *or* all inserted elements were removed again.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::new();
    /// assert!(sv.is_empty());
    ///
    /// let heart_idx = sv.push('♥');
    /// assert!(!sv.is_empty());
    ///
    /// sv.remove(heart_idx);
    /// assert!(sv.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.used_count == 0
    }

    /// Removes all elements from this collection.
    ///
    /// After calling this, `num_elements()` will return 0. All indices are
    /// invalidated. However, no memory is deallocated, so the capacity stays
    /// as it was before.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&['a', 'b']);
    ///
    /// sv.clear();
    /// assert_eq!(sv.num_elements(), 0);
    /// assert!(sv.capacity() >= 2);
    /// ```
    pub fn clear(&mut self) {
        self.data.clear();
        self.deleted.truncate(0);
        self.used_count = 0;
    }

    /// Returns the number of elements the stable-vector can hold without
    /// reallocating.
    pub fn capacity(&self) -> usize {
        self.data.capacity()
    }

    /// Returns the index that would be returned by calling
    /// [`push()`](#method.push).
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&['a', 'b', 'c']);
    ///
    /// let next_index = sv.next_index();
    /// let index_of_d = sv.push('d');
    ///
    /// assert_eq!(next_index, index_of_d);
    /// ```
    pub fn next_index(&self) -> usize {
        self.data.len()
    }

    /// Returns an iterator over immutable references to the existing elements
    /// of this stable vector.
    ///
    /// Note that you can also use the `IntoIterator` implementation of
    /// `&StableVec` to obtain the same iterator.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&[0, 1, 2, 3, 4]);
    /// sv.remove(1);
    ///
    /// // Using the `iter()` method to apply a `filter()`.
    /// let mut it = sv.iter().filter(|&&n| n <= 3);
    /// assert_eq!(it.next(), Some(&0));
    /// assert_eq!(it.next(), Some(&2));
    /// assert_eq!(it.next(), Some(&3));
    /// assert_eq!(it.next(), None);
    ///
    /// // Simple iterate using the implicit `IntoIterator` conversion of the
    /// // for-loop:
    /// for e in &sv {
    ///     println!("{:?}", e);
    /// }
    /// ```
    pub fn iter(&self) -> Iter<T> {
        Iter { sv: self, pos: 0, count: self.used_count }
    }

    /// Returns an iterator over mutable references to the existing elements
    /// of this stable vector.
    ///
    /// Note that you can also use the `IntoIterator` implementation of
    /// `&mut StableVec` to obtain the same iterator.
    ///
    /// Through this iterator, the elements within the stable vector can be
    /// mutated. Furthermore, you can remove elements from the stable vector
    /// during iteration by calling
    /// [`remove_current()`](struct.IterMut.html#method.remove_current) on the
    /// iterator object.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&[1.0, 2.0, 3.0]);
    ///
    /// for e in &mut sv {
    ///     *e *= 2.0;
    /// }
    ///
    /// assert_eq!(sv, &[2.0, 4.0, 6.0] as &[_]);
    /// ```
    ///
    /// As mentioned above, you can remove elements from the stable vector
    /// while iterating over it. But you can't use a `for`-loop in this case.
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&[1.0, 2.0, 3.0]);
    ///
    /// {
    ///     let mut it = sv.iter_mut();
    ///     while let Some(e) = it.next() {
    ///         if *e == 2.0 {
    ///             it.remove_current();
    ///         }
    ///         *e *= 2.0;
    ///     }
    /// }
    ///
    /// assert_eq!(sv, &[2.0, 6.0] as &[_]);
    /// ```
    pub fn iter_mut(&mut self) -> IterMut<T> {
        IterMut {
            deleted: &mut self.deleted,
            count: self.used_count,
            used_count: &mut self.used_count,
            vec_iter: self.data.iter_mut(),
            pos: 0,
        }
    }

    /// Returns an iterator over all valid indices of this stable vector.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&['a', 'b', 'c', 'd']);
    /// sv.remove(1);
    ///
    /// let mut it = sv.keys();
    /// assert_eq!(it.next(), Some(0));
    /// assert_eq!(it.next(), Some(2));
    /// assert_eq!(it.next(), Some(3));
    /// assert_eq!(it.next(), None);
    /// ```
    ///
    /// Simply using the `for`-loop:
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&['a', 'b', 'c', 'd']);
    ///
    /// for index in sv.keys() {
    ///     println!("index: {}", index);
    /// }
    /// ```
    pub fn keys(&self) -> Keys {
        Keys {
            deleted: &self.deleted,
            pos: 0,
            count: self.used_count,
        }
    }

    /// Returns `true` if the stable vector contains an element with the given
    /// value, `false` otherwise.
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&['a', 'b', 'c']);
    /// assert!(sv.contains(&'b'));
    ///
    /// sv.remove(1);   // 'b' is stored at index 1
    /// assert!(!sv.contains(&'b'));
    /// ```
    pub fn contains<U>(&self, item: &U) -> bool
    where
        U: PartialEq<T>,
    {
        for e in self {
            if item == e {
                return true;
            }
        }
        false
    }

    /// Returns the stable vector as a standard `Vec<T>`.
    ///
    /// Returns a vector which contains all existing elements from this stable
    /// vector. **All indices might be invalidated!** This method might call
    /// [`make_compact()`](#method.make_compact); see that method's
    /// documentation to learn about the effects on indices.
    ///
    /// This method does not allocate memory.
    ///
    /// # Note
    ///
    /// If the stable vector is not compact (as defined by `is_compact()`), the
    /// runtime complexity of this function is O(n), because `make_compact()`
    /// needs to be called.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&['a', 'b', 'c']);
    /// sv.remove(1);   // 'b' lives at index 1
    ///
    /// assert_eq!(sv.into_vec(), vec!['a', 'c']);
    /// ```
    pub fn into_vec(mut self) -> Vec<T> {
        // Compact the stable vec to prepare the `data` vector for moving.
        self.make_compact();

        // We reset all values to the "empty state" here. This is necessary to
        // make sure the `drop()` impl doesn't do anything (except for actually
        // freeing the memory of `deleted`).
        self.used_count = 0;
        self.deleted.truncate(0);

        // The `data` vector is moved out of this data structure and replaced
        // with an empty vector. After this line, `self` is dropped.
        mem::replace(&mut self.data, Vec::new())
    }

    /// Retains only the elements specified by the given predicate.
    ///
    /// Each element `e` for which `should_be_kept(&e)` returns `false` is
    /// removed from the stable vector.
    ///
    /// # Example
    ///
    /// ```
    /// # use stable_vec::StableVec;
    /// let mut sv = StableVec::from(&[1, 2, 3, 4, 5]);
    /// sv.retain(|&e| e % 2 == 0);
    ///
    /// assert_eq!(sv, &[2, 4] as &[_]);
    /// ```
    pub fn retain<P>(&mut self, mut should_be_kept: P)
    where
        P: FnMut(&T) -> bool,
    {
        let mut pos = 0;

        while let Some(idx) = next_valid_index(&mut pos, &self.deleted) {
            if !should_be_kept(&self[idx]) {
                self.remove(idx);
            }
        }
    }

    /// Appends all elements in `new_elements` to this `StableVec<T>`. This is
    /// equivalent to calling [`push()`][StableVec::push] for each element.
    pub fn extend_from_slice(&mut self, new_elements: &[T])
    where
        T: Clone,
    {
        // This could be improved for `Copy` elements via specialization.
        for elem in new_elements {
            self.push(elem.clone());
        }
    }
}

impl<T> Drop for StableVec<T> {
    fn drop(&mut self) {
        // We need to drop all elements that have not been removed. We can't
        // just run Vec's drop impl for `self.data` because this would attempt
        // to drop already dropped values. However, the Vec still needs to
        // free its memory.
        //
        // To achieve all this, we manually drop all remaining elements, then
        // tell the Vec that its length is 0 (its capacity stays the same!) and
        // let the Vec drop itself in the end.
        //
        // When `T` doesn't need to be dropped, we can skip this next step.
        // While `ptr::drop_in_place()` already uses the `mem::needs_drop()`
        // check, it's still useful to check it here, to avoid executing these
        // two loops completely.
        if mem::needs_drop::<T>() {
            let living_indices =
                self.deleted
                    .iter()
                    .enumerate()
                    .filter_map(|(i, deleted)| if deleted { None } else { Some(i) });
            for i in living_indices {
                unsafe {
                    ptr::drop_in_place(&mut self.data[i]);
                }
            }
        }

        unsafe {
            self.data.set_len(0);
        }
    }
}

impl<T> Index<usize> for StableVec<T> {
    type Output = T;

    fn index(&self, index: usize) -> &T {
        assert!(self.has_element_at(index));

        &self.data[index]
    }
}

impl<T> IndexMut<usize> for StableVec<T> {
    fn index_mut(&mut self, index: usize) -> &mut T {
        assert!(self.has_element_at(index));

        &mut self.data[index]
    }
}

impl<T> Default for StableVec<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T, S> From<S> for StableVec<T>
where
    S: AsRef<[T]>,
    T: Clone,
{
    fn from(slice: S) -> Self {
        let len = slice.as_ref().len();
        Self {
            data: slice.as_ref().into(),
            deleted: BitVec::from_elem(len, false),
            used_count: len,
        }
    }
}

impl<T> FromIterator<T> for StableVec<T> {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = T>,
    {
        let data = Vec::from_iter(iter);
        Self {
            used_count: data.len(),
            deleted: BitVec::from_elem(data.len(), false),
            data,
        }
    }
}

impl<T> Extend<T> for StableVec<T> {
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = T>,
    {
        // This implementation is not completely exception safe. If the
        // `self.data.extend()` call panics, we won't drop any of the new
        // elements. This is "safe" in the Rust meaning of the word: not
        // calling `drop()` on values is not desireable but not considered
        // *unsafe*.
        let len_before = self.data.len();
        self.data.extend(iter);

        let additional_count = self.data.len() - len_before;
        self.deleted.grow(additional_count, false);
        self.used_count += additional_count;
    }
}

/// Write into `StableVec<u8>` by appending `u8` elements. This is equivalent
/// to calling `push` for each byte.
impl io::Write for StableVec<u8> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.extend_from_slice(buf);
        Ok(buf.len())
    }

    fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
        self.extend_from_slice(buf);
        Ok(())
    }

    fn flush(&mut self) -> io::Result<()> { Ok(()) }
}

impl<'a, T> IntoIterator for &'a StableVec<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, T> IntoIterator for &'a mut StableVec<T> {
    type Item = &'a mut T;
    type IntoIter = IterMut<'a, T>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

/// Iterator over immutable references to the elements of a `StableVec`.
///
/// Use the method [`StableVec::iter()`](struct.StableVec.html#method.iter) or
/// the `IntoIterator` implementation of `&StableVec` to obtain an iterator
/// of this kind.
#[derive(Debug)]
pub struct Iter<'a, T: 'a> {
    sv: &'a StableVec<T>,
    pos: usize,
    count: usize,
}

impl<'a, T: 'a> Iterator for Iter<'a, T> {
    type Item = &'a T;
    fn next(&mut self) -> Option<Self::Item> {
        let out = next_valid_index(&mut self.pos, &self.sv.deleted)
            .map(|i| &self.sv.data[i]);
        if out.is_some() {
            self.count -= 1;
        }

        out
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.count, Some(self.count))
    }
}

impl<T> ExactSizeIterator for Iter<'_, T> {}

/// Iterator over mutable references to the elements of a `StableVec`.
///
/// Use the method [`StableVec::iter_mut()`](struct.StableVec.html#method.iter_mut)
/// or the `IntoIterator` implementation of `&mut StableVec` to obtain an
/// iterator of this kind.
#[derive(Debug)]
pub struct IterMut<'a, T: 'a> {
    deleted: &'a mut BitVec,
    used_count: &'a mut usize,
    vec_iter: ::std::slice::IterMut<'a, T>,
    pos: usize,
    count: usize,
}

impl<'a, T: 'a> IterMut<'a, T> {
    /// Removes the element that was returned by the last `next()` call from
    /// the underlying stable vector.
    ///
    /// # Panic
    ///
    /// This method panics if `next()` hasn't been called yet or if `next()`
    /// returned `None` the last time it was called.
    pub fn remove_current(&mut self) {
        assert!(self.pos != 0);

        self.deleted.set(self.pos - 1, true);
        *self.used_count -= 1;
    }
}

impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = &'a mut T;

    fn next(&mut self) -> Option<Self::Item> {
        // First, we advance until we have found an existing element or until
        // we have reached the end of all elements.
        while self.pos < self.deleted.len() && self.deleted[self.pos] {
            self.pos += 1;
            self.vec_iter.next();
        }

        // Next, we check whether we are at the very end.
        if self.pos == self.deleted.len() {
            None
        } else {
            // Advance the iterator by one and return current element.
            self.pos += 1;
            self.count -= 1;
            self.vec_iter.next()
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.count, Some(self.count))
    }
}

impl<T> ExactSizeIterator for IterMut<'_, T> {}


/// Iterator over all valid indices of a `StableVec`.
///
/// Use the method [`StableVec::keys()`](struct.StableVec.html#method.keys) to
/// obtain an iterator of this kind.
#[derive(Debug)]
pub struct Keys<'a> {
    deleted: &'a BitVec,
    pos: usize,
    count: usize,
}

impl<'a> Iterator for Keys<'a> {
    type Item = usize;
    fn next(&mut self) -> Option<Self::Item> {
        let out = next_valid_index(&mut self.pos, self.deleted);
        if out.is_some() {
            self.count -= 1;
        }

        out
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.count, Some(self.count))
    }
}

impl ExactSizeIterator for Keys<'_> {}

/// Advances the index `pos` while it points to a deleted element. Stops
/// advancing once an existing element is found or the end is reached. In the
/// former case, this element's index is returned; in the latter case, `None`
/// is returned.
///
/// After this function was called, the value of `pos` is:
///
/// - `i + 1` if `Some(i)` was returned
/// - `deleted.len()` if `None` was returned
fn next_valid_index(pos: &mut usize, deleted: &BitVec) -> Option<usize> {
    // First, we advance until we have found an existing element or until
    // we have reached the end of all elements.
    while *pos < deleted.len() && deleted[*pos] {
        *pos += 1;
    }

    // Next, we check whether we are at the very end.
    if *pos == deleted.len() {
        None
    } else {
        // Advance by one and return current position.
        *pos += 1;
        Some(*pos - 1)
    }
}

impl<T: fmt::Debug> fmt::Debug for StableVec<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "StableVec ")?;
        f.debug_list().entries(self).finish()
    }
}

impl<A, B> PartialEq<[B]> for StableVec<A>
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &[B]) -> bool {
        for (i, e) in self.iter().enumerate() {
            if e != &other[i] {
                return false;
            }
        }
        true
    }
}

impl<'other, A, B> PartialEq<&'other [B]> for StableVec<A>
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &&'other [B]) -> bool {
        self == *other
    }
}

impl<A, B> PartialEq<Vec<B>> for StableVec<A>
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &Vec<B>) -> bool {
        self == &other[..]
    }
}