1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
//
// Copyright (c) 2023 ZettaScale Technology
//
// This program and the accompanying materials are made available under the
// terms of the Eclipse Public License 2.0 which is available at
// http://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0
// which is available at https://www.apache.org/licenses/LICENSE-2.0.
//
// SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
//
// Contributors:
// Pierre Avital, <pierre.avital@me.com>
//
//! The core of the [`stabby`](https://crates.io/crates/stabby) ABI.
//!
//! This crate is generally not meant to be used directly, but through the `stabby` crate.
#![deny(
missing_docs,
clippy::missing_panics_doc,
clippy::missing_const_for_fn,
clippy::missing_safety_doc,
clippy::missing_errors_doc
)]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(stabby_nightly, feature(freeze))]
/// ABI-stable smart pointers and allocated data structures, with support for custom allocators.
pub mod alloc;
/// Extending [Non-Zero Types](core::num) to enable niches for other values than 0.
pub mod num;
pub use stabby_macros::{canary_suffixes, dynptr, export, import, stabby, vtable as vtmacro};
use typenum2::unsigned::Alignment;
use core::fmt::{Debug, Display};
/// A no-op that fails to compile if `T` isn't proven ABI-stable by stabby.
pub const fn assert_stable<T: IStable>() {}
/// An ABI-stable tuple.
#[crate::stabby]
#[derive(Debug, Default, Clone, Copy, Hash, PartialEq, Eq)]
pub struct Tuple<A, B>(pub A, pub B);
/// Generate the [`IStable::REPORT`] and [`IStable::ID`] fields for an implementation of [`IStable`].
#[macro_export]
macro_rules! primitive_report {
($name: expr, $ty: ty) => {
const REPORT: &'static $crate::report::TypeReport = &$crate::report::TypeReport {
name: $crate::str::Str::new($name),
module: $crate::str::Str::new(core::module_path!()),
fields: $crate::StableLike::new(Some(&$crate::report::FieldReport {
name: $crate::str::Str::new("inner"),
ty: <$ty as $crate::IStable>::REPORT,
next_field: $crate::StableLike::new(None),
})),
version: 0,
tyty: $crate::report::TyTy::Struct,
};
const ID: u64 = $crate::report::gen_id(Self::REPORT);
};
($name: expr) => {
const REPORT: &'static $crate::report::TypeReport = &$crate::report::TypeReport {
name: $crate::str::Str::new($name),
module: $crate::str::Str::new(core::module_path!()),
fields: $crate::StableLike::new(None),
version: 0,
tyty: $crate::report::TyTy::Struct,
};
const ID: u64 = $crate::report::gen_id(Self::REPORT);
};
}
/// A support module for stabby's dark magic.
///
/// It implements basic arithmetics in the type system, and needs to be included in stabby for the ternaries
/// to keep trait bounds that are needed for proofs to work out.
pub mod typenum2;
use istable::{ISaturatingAdd, Saturator};
#[doc(hidden)]
pub use typenum2::*;
/// Fires a compile error if the layout of a type is deemed sub-optimal.
#[macro_export]
macro_rules! assert_optimal_layout {
($t: ty) => {
const _: () = {
assert!(<$t>::has_optimal_layout());
};
};
}
pub use crate::enums::IDeterminantProvider;
/// Helpers to treat ABI-stable types as if they were their unstable equivalents.
pub mod as_mut;
/// ABI-stable equivalents of iterators.
pub mod iter;
/// Provides access to a value _as if_ it were of another type.
///
/// This is done by the following process:
/// - memcopy `self` into `copy`
/// - convert `copy` into `target: ManuallyDrop<Target>`
/// - provide a guard that can `Deref` or `DerefMut` into `target`
/// - upon dropping the mutable guard, convert `target` and assing `target` to `self`
///
/// This is always safe for non-self-referencial types.
pub trait AccessAs {
/// Provides immutable access to a type as if it were its ABI-unstable equivalent.
fn ref_as<T: ?Sized>(&self) -> <Self as as_mut::IGuardRef<T>>::Guard<'_>
where
Self: as_mut::IGuardRef<T>;
/// Provides mutable access to a type as if it were its ABI-unstable equivalent.
fn mut_as<T: ?Sized>(&mut self) -> <Self as as_mut::IGuardMut<T>>::GuardMut<'_>
where
Self: as_mut::IGuardMut<T>;
}
pub use fatptr::*;
/// How stabby does multi-trait objects.
mod fatptr;
/// Closures, but ABI-stable
pub mod closure;
/// Futures, but ABI-stable
pub mod future;
mod stable_impls;
/// Support for vtables for multi-trait objects
pub mod vtable;
// #[allow(type_alias_bounds)]
// pub type Stable<Source: IStabilize> = Source::Stable;
/// A ZST that's only allowed to exist if its generic parameter is ABI-stable.
pub struct AssertStable<T: IStable>(pub core::marker::PhantomData<T>);
impl<T: IStable> AssertStable<T> {
/// Proves that `T` is ABI-stable.
pub const fn assert() -> Self {
Self(core::marker::PhantomData)
}
}
/// Lets you tell `stabby` that `T` has the same stable layout as `As`.
///
/// Lying about this link between `T` and `As` will cause UB if a `#[repr(stabby)]` enum transitively contains
/// a value of this type.
///
/// If you want to be safe when using this, use [`NoNiches`] with the correct size and alignment for your
/// type.
#[repr(C)]
#[derive(PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct StableLike<T, As> {
value: T,
marker: core::marker::PhantomData<As>,
}
impl<T: Debug, As> Debug for StableLike<T, As> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.value.fmt(f)
}
}
impl<T: Display, As> Display for StableLike<T, As> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.value.fmt(f)
}
}
impl<T: Clone, As> Clone for StableLike<T, As> {
fn clone(&self) -> Self {
Self {
value: self.value.clone(),
marker: self.marker,
}
}
}
impl<T: Copy, As> Copy for StableLike<T, As> {}
trait ConstChecks {
const CHECK: ();
}
impl<T, As: IStable> ConstChecks for StableLike<T, As> {
const CHECK: () = {
if core::mem::size_of::<T>() != <As::Size as Unsigned>::USIZE {
panic!(
"Attempted to construct `StableLike<T, As>` despite As::Size not matching T's size"
)
}
if core::mem::align_of::<T>() != <As::Align as Unsigned>::USIZE {
panic!(
"Attempted to construct `StableLike<T, As>` despite As::Size not matching T's size"
)
}
};
}
impl<T, As: IStable> StableLike<T, As> {
/// Wraps a value in a type that provides information about its layout.
///
/// Asserts that `T` and `As` have the same size and aligment at compile time,
/// and relies on the user for the niche information to be correct.
#[allow(clippy::let_unit_value)]
pub const fn new(value: T) -> Self {
_ = Self::CHECK;
Self {
value,
marker: core::marker::PhantomData,
}
}
/// Returns a reference to the underlying type
/// # Safety
/// This is only safe if `T` is FFI-safe, or if this `self` was constructed from a value
/// of `T` that was instanciated within the same shared object.
pub const unsafe fn as_ref_unchecked(&self) -> &T {
&self.value
}
/// Returns a reference to the underlying type
pub const fn as_ref(&self) -> &T
where
T: IStable,
{
&self.value
}
/// # Safety
/// This is only safe if `T` is FFI-safe, or if this `self` was constructed from a value
/// of `T` that was instanciated within the same shared object.
pub unsafe fn as_mut_unchecked(&mut self) -> &mut T {
&mut self.value
}
/// # Safety
/// This is only safe if `T` is FFI-safe, or if this `self` was constructed from a value
/// of `T` that was instanciated within the same shared object.
pub unsafe fn into_inner_unchecked(self) -> T {
self.value
}
/// Extracts the inner value from `self`
pub fn into_inner(self) -> T
where
T: IStable,
{
self.value
}
}
unsafe impl<T, As: IStable> IStable for StableLike<T, As> {
type Size = As::Size;
type Align = As::Align;
type ForbiddenValues = As::ForbiddenValues;
type UnusedBits = As::UnusedBits;
type HasExactlyOneNiche = As::HasExactlyOneNiche;
type ContainsIndirections = As::ContainsIndirections;
const ID: u64 = crate::report::gen_id(Self::REPORT);
const REPORT: &'static report::TypeReport = As::REPORT;
}
/// Emulates a type of size `Size` and alignment `Align`.
///
/// Note that this is not a ZST, and that you may pass [`B0`] or [`B1`] as the this generic parameter if you
/// want to inform `stabby` that the type it emulates has exactly zero or one niche respectively that the
/// compiler knows about. This information can be used by `stabby` to determine that `core::option::Option`s
/// transitively containing the emulated type are indeed ABI-stable.
pub struct NoNiches<
Size: Unsigned,
Align: Alignment,
HasExactlyOneNiche: ISaturatingAdd = Saturator,
ContainsIndirections: Bit = B0,
>(
Size::Padding,
core::marker::PhantomData<(Size, Align, HasExactlyOneNiche, ContainsIndirections)>,
);
unsafe impl<
Size: Unsigned,
Align: Alignment,
HasExactlyOneNiche: ISaturatingAdd,
ContainsIndirections: Bit,
> IStable for NoNiches<Size, Align, HasExactlyOneNiche, ContainsIndirections>
{
type Size = Size;
type Align = Align;
type ForbiddenValues = End;
type UnusedBits = End;
type HasExactlyOneNiche = HasExactlyOneNiche;
type ContainsIndirections = ContainsIndirections;
primitive_report!("NoNiches");
}
/// Allows removing the [`IStable`] implementation from `T` if `Cond` is not also ABI-stable.
///
/// This is typically used in combination with [`StableLike`], for example in vtables to mark function
/// pointers as stable only if all of their arguments are stable.
#[repr(C)]
pub struct StableIf<T, Cond> {
/// The actual value
pub value: T,
marker: core::marker::PhantomData<Cond>,
}
impl<T: Clone, Cond> Clone for StableIf<T, Cond> {
fn clone(&self) -> Self {
Self {
value: self.value.clone(),
marker: self.marker,
}
}
}
impl<T: Copy, Cond> Copy for StableIf<T, Cond> {}
impl<T, Cond> StableIf<T, Cond> {
/// # Safety
/// Refer to type documentation
pub const unsafe fn new(value: T) -> Self {
Self {
value,
marker: core::marker::PhantomData,
}
}
}
impl<T, Cond> core::ops::Deref for StableIf<T, Cond> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.value
}
}
impl<T, Cond> core::ops::DerefMut for StableIf<T, Cond> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.value
}
}
unsafe impl<T: IStable, Cond: IStable> IStable for StableIf<T, Cond> {
type Size = T::Size;
type Align = T::Align;
type ForbiddenValues = T::ForbiddenValues;
type UnusedBits = T::UnusedBits;
type HasExactlyOneNiche = T::HasExactlyOneNiche;
type ContainsIndirections = T::ContainsIndirections;
const REPORT: &'static report::TypeReport = T::REPORT;
const ID: u64 = crate::report::gen_id(Self::REPORT);
}
/// Used by proc-macros to concatenate fields before wrapping them in a [`Struct`] to compute their layout.
#[repr(C)]
#[derive(Default, Clone, Copy)]
pub struct FieldPair<A, B>(core::marker::PhantomData<(A, B)>);
/// Used by proc-macros to ensure a list of fields gets the proper end padding.
#[repr(transparent)]
pub struct Struct<T>(T);
/// Used by [`crate::result::Result`]
#[repr(C)]
pub union Union<A, B> {
/// The `ok` variant of the union.
pub ok: core::mem::ManuallyDrop<A>,
/// The `err` variant of the union.
pub err: core::mem::ManuallyDrop<B>,
}
impl<A, B> Clone for Union<A, B> {
fn clone(&self) -> Self {
unsafe { core::ptr::read(self) }
}
}
/// How `stabby` exposes symbols that must be checked through canaries or reflection before being accessed to prevent UB after linking ABI-incompatible functions.
pub mod checked_import;
/// ABI-stable compact sum types!
pub mod enums;
/// How stabby computes and generates padding to shift variants in enums
pub mod padding;
/// Like [`core::result::Result`], but ABI-stable with niche optimizations!
pub mod result;
pub use result::Result;
/// Like [`core::option::Option`], but ABI-stable with niche optimizations!
pub mod option;
pub use option::Option;
/// A very simple ABI-stable reflection framework.
pub mod report;
/// ABI-stable slices.
pub mod slice;
/// ABI-stable strs.
pub mod str;
pub use istable::{Array, End, IStable};
/// The heart of `stabby`: the [`IStable`] trait.
pub mod istable;
mod boundtests {
#[crate::stabby]
pub trait Test {
extern "C" fn test(&self);
extern "C" fn test2(&self);
}
#[crate::stabby]
pub struct Test2 {
a: usize,
b: usize,
}
}
/// Expands to [`unreachable!()`](core::unreachable) in debug builds or if `--cfg check_unreachable=true` has been set in the `RUST_FLAGS`, and to [`core::hint::unreachable_unchecked`] otherwise.
///
/// This lets the compiler take advantage of the fact that the code is unreachable in release builds, and optimize accordingly, while giving you the opportunity to double check this at runtime in case of doubts.
///
/// # Panics
/// This macro panics if the code is actually reachable in debug mode.
/// This would mean that release code would be UB!
///
/// # Safety
/// This macro is inherently unsafe, as it can cause UB in release mode if the code is actually reachable.
#[macro_export]
macro_rules! unreachable_unchecked {
() => {
if cfg!(any(debug_assertions, check_unreachable = "true")) {
::core::unreachable!()
} else {
::core::hint::unreachable_unchecked()
}
};
}
/// Expands to [`assert!(condition)`](core::assert) in debug builds or if `--cfg check_unreachable=true` has been set in the `RUST_FLAGS`, and to [`if condition {core::hint::unreachable_unchecked()}`](core::hint::unreachable_unchecked) otherwise.
///
/// This lets the compiler take advantage of the fact that the condition is always true in release builds, and optimize accordingly, while giving you the opportunity to double check this at runtime in case of doubts.
///
/// # Panics
/// This macro panics if the code is actually false in debug mode.
/// This would mean that release code would be UB!
///
/// # Safety
/// This macro is inherently unsafe, as it can cause UB in release mode if the assertion can actually be false.
#[macro_export]
macro_rules! assert_unchecked {
($e: expr, $($t: tt)*) => {
if cfg!(any(debug_assertions, check_unreachable = "true")) {
::core::assert!($e, $($t)*);
} else {
if !$e {
::core::hint::unreachable_unchecked();
}
}
};
}
/// Expands to [`assert_eq`](core::assert_eq) in debug builds or if `--cfg check_unreachable=true` has been set in the `RUST_FLAGS`, and to [`if a != b {core::hint::unreachable_unchecked()}`](core::hint::unreachable_unchecked) otherwise.
///
/// This lets the compiler take advantage of the fact that the condition is always true in release builds, and optimize accordingly, while giving you the opportunity to double check this at runtime in case of doubts.
///
/// # Panics
/// This macro panics if the code is actually false in debug mode.
/// This would mean that release code would be UB!
///
/// # Safety
/// This macro is inherently unsafe, as it can cause UB in release mode if the assertion can actually be false.
#[macro_export]
macro_rules! assert_eq_unchecked {
($a: expr, $b: expr, $($t: tt)*) => {
if cfg!(any(debug_assertions, check_unreachable = "true")) {
::core::assert_eq!($a, $b, $($t)*);
} else {
if $a != $b {
::core::hint::unreachable_unchecked();
}
}
};
}