ssp 0.5.4

Messages and related types for implementing the SSP/eSSP serial communication protocol
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
//! AES implementation from the ITL SSP SDK
//!
//! Minor modifications for style, and clarity, otherwise a direct translation from the original C.

use crate::{Error, Result};

pub const MAX_KEY_LENGTH: usize = 16;
pub const AES_KEY: usize = 16;
pub const AES_BLOCK: usize = 16;
pub const NUMBER_ROUNDS: usize = 10;

pub const WORD_ALL: u32 = 0xffffffff;
pub const WORD_MSB: u32 = 0x80000000;
pub const WORD_ZERO: u32 = 0x00000000;
pub const WORD_ONE: u32 = 0x00000001;

/// Define the GF2^8 irreducible field polynomial 0x11B = x^8 + x^4 + x^3 + x + 1
pub const GF2_8_FIELD_POLYNOMIAL: u8 = 0x1B;

/// forward S-box = SubBytes() transformation
#[rustfmt::skip]
pub static FORWARD_S_BOX: [u8; 256] = [
  0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
  0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
  0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
  0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
  0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
  0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
  0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
  0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
  0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
  0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
  0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
  0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
  0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
  0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
  0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
  0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
  0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
  0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
  0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
  0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
  0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
  0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
  0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
  0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
  0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
  0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
  0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
  0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
  0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
  0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
  0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
  0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
];

/// Inverse S-box = InvSubBytes() transformation
#[rustfmt::skip]
pub static INVERSE_S_BOX: [u8; 256] = [
  0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
  0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
  0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
  0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
  0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
  0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
  0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
  0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
  0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
  0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
  0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
  0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
  0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
  0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
  0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
  0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
  0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
  0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
  0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
  0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
  0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
  0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
  0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
  0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
  0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
  0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
  0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
  0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
  0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
  0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
  0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
  0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
];

/// Round constants = [2^i in GF(2^8)]
#[rustfmt::skip]
pub static RCON: [u8; 10] = [
  0x01, 0x02, 0x04, 0x08, 0x10,
  0x20, 0x40, 0x80, 0x1B, 0x36
];

pub const fn gf2_8_field_mult_by_2(a: u8) -> u8 {
    // mult by 2, if MSB was 1 then reduce by field polynomial
    let r = [a << 1, (a << 1) ^ GF2_8_FIELD_POLYNOMIAL];

    // this is for SPA resistance
    r[((a & 0x80) != 0x0) as usize]
}

/// Performs a forward S-box lookup.
pub fn forward_sub_byte(input: usize) -> u8 {
    FORWARD_S_BOX[input % FORWARD_S_BOX.len()]
}

/// Performs an inverse S-box lookup.
pub fn inverse_sub_byte(input: usize) -> u8 {
    INVERSE_S_BOX[input % INVERSE_S_BOX.len()]
}

/// Get the zeroth byte (big-endian) of a 32-bit word.
pub const fn byte_0(w: u32) -> u8 {
    ((w >> 24) & 0xff) as u8
}

/// Get the first byte (big-endian) of a 32-bit word.
pub const fn byte_1(w: u32) -> u8 {
    ((w >> 16) & 0xff) as u8
}

/// Get the second byte (big-endian) of a 32-bit word.
pub const fn byte_2(w: u32) -> u8 {
    ((w >> 8) & 0xff) as u8
}

/// Get the third byte (big-endian) of a 32-bit word.
pub const fn byte_3(w: u32) -> u8 {
    (w & 0xff) as u8
}

/// Concatenates 4 x 8-bit words to one 32-bit word (big-endian).
pub const fn concat_4_bytes(b: [u8; 4]) -> u32 {
    u32::from_be_bytes(b)
}

/// Splits a 32-bit word into 4 x 8-bit words (big-endian).
pub const fn split_into_4_bytes(w: u32) -> [u8; 4] {
    w.to_be_bytes()
}

fn split_into_4_bytes_inplace(w: u32, out: &mut [u8]) {
    if out.len() < 4 {
        return;
    }

    for (o, &b) in out[..4].iter_mut().zip(w.to_be_bytes().iter()) {
        *o = b;
    }
}

/// Performs the forward S-box substitution.
pub const fn forward_mix_col(state_in: u32) -> u32 {
    // t = a[0] + a[1] + a[2] + a[3]
    let t = byte_0(state_in) ^ byte_1(state_in) ^ byte_2(state_in) ^ byte_3(state_in);

    // v = a[0] + a[1]
    // v = x*v
    // r[0] = a[0] + v + t
    let mut v = byte_0(state_in) ^ byte_1(state_in);
    v = gf2_8_field_mult_by_2(v);
    let state_out = ((byte_0(state_in) ^ v ^ t) as u32) << 24;

    // v = a[1] + a[2]
    // v = x*v
    // r[1] = a[1] + v + t
    v = byte_1(state_in) ^ byte_2(state_in);
    v = gf2_8_field_mult_by_2(v);
    let state_out = state_out ^ (((byte_1(state_in) ^ v ^ t) as u32) << 16);

    // v = a[2] + a[3]
    // v = x*v
    // r[2] = a[2] + v + t
    v = byte_2(state_in) ^ byte_3(state_in);
    v = gf2_8_field_mult_by_2(v);
    let state_out = state_out ^ (((byte_2(state_in) ^ v ^ t) as u32) << 8);

    // v = a[3] + a[0]
    // v = x*v
    // r[3] = a[3] + v + t
    v = byte_3(state_in) ^ byte_0(state_in);
    v = gf2_8_field_mult_by_2(v);
    // return result
    state_out ^ ((byte_3(state_in) ^ v ^ t) as u32)
}

/// Performs the inverse S-box substitution.
pub const fn inverse_mix_col(state_in: u32) -> u32 {
    // u = x*(x*(a[0] + a[2]))
    let u = gf2_8_field_mult_by_2(gf2_8_field_mult_by_2(byte_0(state_in) ^ byte_2(state_in)));

    // v = v*(v*(a[1] + a[3]))
    let v = gf2_8_field_mult_by_2(gf2_8_field_mult_by_2(byte_1(state_in) ^ byte_3(state_in)));

    // a[0] = a[0] + u
    // a[1] = a[1] + v
    // a[2] = a[2] + u
    // a[3] = a[3] + v
    let state_out = u32::from_be_bytes([
        (byte_0(state_in) ^ u),
        (byte_1(state_in) ^ v),
        (byte_2(state_in) ^ u),
        (byte_3(state_in) ^ v),
    ]);

    // MixCol( a )
    // return result
    forward_mix_col(state_out)
}

/// Represents a context for performing AES cryptographic operations.
#[repr(C)]
#[derive(zeroize::Zeroize)]
pub struct AesContext {
    enc_round_keys: [u32; 44],
}

impl AesContext {
    /// Creates a new [AesContext].
    pub const fn new() -> Self {
        Self {
            enc_round_keys: [0u32; 44],
        }
    }

    /// Derives and sets the round keys for AES operations.
    pub fn set_key(&mut self, key: &[u8; AES_KEY]) {
        // get mutable reference to encryption round keys
        let mut enc_round_key = self.enc_round_keys.as_mut();

        // enc_round_key[0..3] is the original key
        for (round_key, k) in enc_round_key[..4].iter_mut().zip(key.chunks_exact(4)) {
            // unwrap will not panic because `k`'s length is guaranteed to be 4
            *round_key = concat_4_bytes(k.try_into().unwrap());
        }

        // derive enc_round_key[4..43] from enc_round_key[0..3]
        for rcon in RCON.iter() {
            // enc_round_key[i mod 4 == 0] = .. where i = this i * 4 (means i from FIPS-197 Fig.11)
            // 32-bit w[i-4]
            enc_round_key[4] = enc_round_key[0]
                ^ u32::from_be_bytes([
                    // 32-bit { s-box( enc_round_key[i-1]-a1 )
                    (forward_sub_byte(byte_1(enc_round_key[3]) as usize) ^ rcon),
                    // s-box( enc_round_key[i-1]-a2 )
                    forward_sub_byte(byte_2(enc_round_key[3]) as usize),
                    // s-box( enc_round_key[i-1]-a3 )
                    forward_sub_byte(byte_3(enc_round_key[3]) as usize),
                    // s-box( enc_round_key[i-1]-a0 ) } = subword(rotword(w[i-1]))
                    forward_sub_byte(byte_0(enc_round_key[3]) as usize),
                ]);

            // enc_round_key[i mod 4 != 0] = w[i-4] XOR w[i-1], where i = this i * 4 (means i from FIPS-197 Fig.11)
            enc_round_key[5] = enc_round_key[1] ^ enc_round_key[4];
            enc_round_key[6] = enc_round_key[2] ^ enc_round_key[5];
            enc_round_key[7] = enc_round_key[3] ^ enc_round_key[6];

            // next 4 32-bit words
            enc_round_key = &mut enc_round_key[4..];
        }
    }

    /// Encrypts a 16-byte block in-place using the AES function.
    pub fn encrypt_16_byte_block(&self, plain: &[u8; AES_BLOCK], cipher: &mut [u8]) {
        assert!(cipher.len() >= AES_BLOCK);

        let mut round_key = self.enc_round_keys.as_ref();

        // read 16 plain text bytes into four 32-bit words (FIPS-197: state = in )
        //
        // the following `unwrap` calls will never panic because the byte length is guaranteed
        // correct.
        let mut cx0 = concat_4_bytes(plain[..4].try_into().unwrap());
        let mut cx1 = concat_4_bytes(plain[4..8].try_into().unwrap());
        let mut cx2 = concat_4_bytes(plain[8..12].try_into().unwrap());
        let mut cx3 = concat_4_bytes(plain[12..].try_into().unwrap());

        // XOR it with encryption round_key[0..3] (FIPS-197: AddRoundKey(state))
        cx0 ^= round_key[0];
        cx1 ^= round_key[1];
        cx2 ^= round_key[2];
        cx3 ^= round_key[3];

        // do encryption rounds 1..9
        // forward S-box, ShiftRows() via input structure, MixCol, XOR round_key
        round_key = &round_key[4..];

        let (mut cy0, mut cy1, mut cy2, mut cy3);

        for _i in 0..9 {
            cy0 = round_key[0]
                ^ forward_mix_col(u32::from_be_bytes([
                    forward_sub_byte(byte_0(cx0) as usize),
                    forward_sub_byte(byte_1(cx1) as usize),
                    forward_sub_byte(byte_2(cx2) as usize),
                    forward_sub_byte(byte_3(cx3) as usize),
                ]));

            cy1 = round_key[1]
                ^ forward_mix_col(u32::from_be_bytes([
                    forward_sub_byte(byte_0(cx1) as usize),
                    forward_sub_byte(byte_1(cx2) as usize),
                    forward_sub_byte(byte_2(cx3) as usize),
                    forward_sub_byte(byte_3(cx0) as usize),
                ]));

            cy2 = round_key[2]
                ^ forward_mix_col(u32::from_be_bytes([
                    forward_sub_byte(byte_0(cx2) as usize),
                    forward_sub_byte(byte_1(cx3) as usize),
                    forward_sub_byte(byte_2(cx0) as usize),
                    forward_sub_byte(byte_3(cx1) as usize),
                ]));

            cy3 = round_key[3]
                ^ forward_mix_col(u32::from_be_bytes([
                    forward_sub_byte(byte_0(cx3) as usize),
                    forward_sub_byte(byte_1(cx0) as usize),
                    forward_sub_byte(byte_2(cx1) as usize),
                    forward_sub_byte(byte_3(cx2) as usize),
                ]));

            round_key = &round_key[4..];

            // copy cy --> cx for input for next round
            cx0 = cy0;
            cx1 = cy1;
            cx2 = cy2;
            cx3 = cy3;
        }

        // final forward S-box round inluding ShiftRows() via input structure
        cy0 = round_key[0]
            ^ u32::from_be_bytes([
                forward_sub_byte(byte_0(cx0) as usize),
                forward_sub_byte(byte_1(cx1) as usize),
                forward_sub_byte(byte_2(cx2) as usize),
                forward_sub_byte(byte_3(cx3) as usize),
            ]);

        cy1 = round_key[1]
            ^ u32::from_be_bytes([
                forward_sub_byte(byte_0(cx1) as usize),
                forward_sub_byte(byte_1(cx2) as usize),
                forward_sub_byte(byte_2(cx3) as usize),
                forward_sub_byte(byte_3(cx0) as usize),
            ]);

        cy2 = round_key[2]
            ^ u32::from_be_bytes([
                forward_sub_byte(byte_0(cx2) as usize),
                forward_sub_byte(byte_1(cx3) as usize),
                forward_sub_byte(byte_2(cx0) as usize),
                forward_sub_byte(byte_3(cx1) as usize),
            ]);

        cy3 = round_key[3]
            ^ u32::from_be_bytes([
                forward_sub_byte(byte_0(cx3) as usize),
                forward_sub_byte(byte_1(cx0) as usize),
                forward_sub_byte(byte_2(cx1) as usize),
                forward_sub_byte(byte_3(cx2) as usize),
            ]);

        split_into_4_bytes_inplace(cy0, cipher[..4].as_mut());
        split_into_4_bytes_inplace(cy1, cipher[4..8].as_mut());
        split_into_4_bytes_inplace(cy2, cipher[8..12].as_mut());
        split_into_4_bytes_inplace(cy3, cipher[12..].as_mut());
    }

    /// Decrypts a 16-byte block in-place using the AES function.
    pub fn decrypt_16_byte_block(&self, cipher: &[u8; AES_BLOCK], plain: &mut [u8]) {
        assert!(plain.len() >= AES_BLOCK);

        // get decryption round keys --> changed: get encryption round keys
        let mut round_key_offset = 40;
        let mut round_key = self.enc_round_keys[round_key_offset..].as_ref();

        // read 16 cipher text bytes into four 32-bit words (FIPS-197: state = in )
        //
        // the following `unwrap` calls will never panic because the length is guaranteed correct.
        let mut cx0 = concat_4_bytes(cipher[..4].try_into().unwrap());
        let mut cx1 = concat_4_bytes(cipher[4..8].try_into().unwrap());
        let mut cx2 = concat_4_bytes(cipher[8..12].try_into().unwrap());
        let mut cx3 = concat_4_bytes(cipher[12..].try_into().unwrap());

        // XOR it with enc_round_key[43..40]
        cx0 ^= round_key[0];
        cx1 ^= round_key[1];
        cx2 ^= round_key[2];
        cx3 ^= round_key[3];

        let (mut cy0, mut cy1, mut cy2, mut cy3);

        // do decryption rounds 9..1
        // inverse S-box, inverse ShiftRows() via input structure, inverseMixCol, XOR round_key
        round_key_offset -= 4;
        round_key = self.enc_round_keys[round_key_offset..].as_ref();
        for _i in 0..9 {
            cy0 = inverse_mix_col(
                round_key[0]
                    ^ u32::from_be_bytes([
                        inverse_sub_byte(byte_0(cx0) as usize),
                        inverse_sub_byte(byte_1(cx3) as usize),
                        inverse_sub_byte(byte_2(cx2) as usize),
                        inverse_sub_byte(byte_3(cx1) as usize),
                    ]),
            );

            cy1 = inverse_mix_col(
                round_key[1]
                    ^ u32::from_be_bytes([
                        inverse_sub_byte(byte_0(cx1) as usize),
                        inverse_sub_byte(byte_1(cx0) as usize),
                        inverse_sub_byte(byte_2(cx3) as usize),
                        inverse_sub_byte(byte_3(cx2) as usize),
                    ]),
            );

            cy2 = inverse_mix_col(
                round_key[2]
                    ^ u32::from_be_bytes([
                        inverse_sub_byte(byte_0(cx2) as usize),
                        inverse_sub_byte(byte_1(cx1) as usize),
                        inverse_sub_byte(byte_2(cx0) as usize),
                        inverse_sub_byte(byte_3(cx3) as usize),
                    ]),
            );

            cy3 = inverse_mix_col(
                round_key[3]
                    ^ u32::from_be_bytes([
                        inverse_sub_byte(byte_0(cx3) as usize),
                        inverse_sub_byte(byte_1(cx2) as usize),
                        inverse_sub_byte(byte_2(cx1) as usize),
                        inverse_sub_byte(byte_3(cx0) as usize),
                    ]),
            );

            round_key_offset -= 4;
            round_key = self.enc_round_keys[round_key_offset..].as_ref();

            // copy cy --> cx for input for next round
            cx0 = cy0;
            cx1 = cy1;
            cx2 = cy2;
            cx3 = cy3;
        }

        // final round:
        cy0 = round_key[0]
            ^ u32::from_be_bytes([
                inverse_sub_byte(byte_0(cx0) as usize),
                inverse_sub_byte(byte_1(cx3) as usize),
                inverse_sub_byte(byte_2(cx2) as usize),
                inverse_sub_byte(byte_3(cx1) as usize),
            ]);

        cy1 = round_key[1]
            ^ u32::from_be_bytes([
                inverse_sub_byte(byte_0(cx1) as usize),
                inverse_sub_byte(byte_1(cx0) as usize),
                inverse_sub_byte(byte_2(cx3) as usize),
                inverse_sub_byte(byte_3(cx2) as usize),
            ]);

        cy2 = round_key[2]
            ^ u32::from_be_bytes([
                inverse_sub_byte(byte_0(cx2) as usize),
                inverse_sub_byte(byte_1(cx1) as usize),
                inverse_sub_byte(byte_2(cx0) as usize),
                inverse_sub_byte(byte_3(cx3) as usize),
            ]);

        cy3 = round_key[3]
            ^ u32::from_be_bytes([
                inverse_sub_byte(byte_0(cx3) as usize),
                inverse_sub_byte(byte_1(cx2) as usize),
                inverse_sub_byte(byte_2(cx1) as usize),
                inverse_sub_byte(byte_3(cx0) as usize),
            ]);

        // write result into plain text byte array
        split_into_4_bytes_inplace(cy0, plain[..4].as_mut());
        split_into_4_bytes_inplace(cy1, plain[4..8].as_mut());
        split_into_4_bytes_inplace(cy2, plain[8..12].as_mut());
        split_into_4_bytes_inplace(cy3, plain[12..].as_mut());
    }
}

/// Encrypts a plaintext data buffer using AES in ECB mode.
///
/// Returns the resulting ciphertext. Plaintext must be a multiple of 16.
pub fn aes_encrypt<const N: usize>(key: &[u8; AES_KEY], plain_data: &[u8; N]) -> Result<[u8; N]> {
    if N % AES_BLOCK != 0 {
        Err(Error::Aes(format!(
            "plaintext must be a multiple of {AES_BLOCK}, have: {N}"
        )))
    } else {
        let mut aes_ctx = AesContext::new();
        aes_ctx.set_key(key);

        let mut cipher = [0u8; N];

        let plain_blocks = plain_data.chunks_exact(AES_BLOCK);
        let ciph_blocks = cipher.chunks_exact_mut(AES_BLOCK);

        for (plain_block, ciph_block) in plain_blocks.zip(ciph_blocks) {
            aes_ctx.encrypt_16_byte_block(plain_block.try_into().unwrap(), ciph_block);
        }

        Ok(cipher)
    }
}

/// Encrypts a plaintext data buffer using AES in ECB mode in-place.
///
/// Returns the `Ok` on success, `Err` on failure. Ciphertext must be a multiple of 16.
pub fn aes_encrypt_inplace(
    key: &[u8; AES_KEY],
    plain_data: &[u8],
    cipher_data: &mut [u8],
) -> Result<()> {
    let plain_len = plain_data.len();
    let cipher_len = cipher_data.len();

    if plain_data.len() % AES_BLOCK != 0 || plain_len != cipher_len {
        Err(Error::Aes(format!(
            "plaintext must be a multiple of {AES_BLOCK}, have: {plain_len}"
        )))
    } else {
        let mut aes_ctx = AesContext::new();
        aes_ctx.set_key(key);

        let plain_blocks = plain_data.chunks_exact(AES_BLOCK);
        let ciph_blocks = cipher_data.chunks_exact_mut(AES_BLOCK);

        for (plain_block, ciph_block) in plain_blocks.zip(ciph_blocks) {
            aes_ctx.encrypt_16_byte_block(plain_block.try_into().unwrap(), ciph_block);
        }

        Ok(())
    }
}

/// Decrypts a ciphertext data buffer using AES in ECB mode.
///
/// Returns the resulting plaintext. Ciphertext must be a multiple of 16.
pub fn aes_decrypt<const N: usize>(key: &[u8; AES_KEY], cipher_data: &[u8; N]) -> Result<[u8; N]> {
    if N % AES_BLOCK != 0 {
        Err(Error::Aes(format!(
            "ciphertext must be a multiple of {AES_BLOCK}, have: {N}"
        )))
    } else {
        let mut aes_ctx = AesContext::new();
        aes_ctx.set_key(key);

        let mut plain = [0u8; N];

        let ciph_blocks = cipher_data.chunks_exact(AES_BLOCK);
        let plain_blocks = plain.chunks_exact_mut(AES_BLOCK);

        for (ciph_block, plain_block) in ciph_blocks.zip(plain_blocks) {
            aes_ctx.decrypt_16_byte_block(ciph_block.try_into().unwrap(), plain_block);
        }

        Ok(plain)
    }
}

/// Decrypts a ciphertext data buffer using AES in ECB mode in-place.
///
/// Returns the `Ok` on success, `Err` on failure. Ciphertext must be a multiple of 16.
pub fn aes_decrypt_inplace(
    key: &[u8; AES_KEY],
    cipher_data: &[u8],
    plain_data: &mut [u8],
) -> Result<()> {
    let cipher_len = cipher_data.len();
    let plain_len = plain_data.len();

    if cipher_len % AES_BLOCK != 0 || cipher_len != plain_len {
        Err(Error::Aes(format!(
            "ciphertext must be a multiple of {AES_BLOCK}, have: {cipher_len}"
        )))
    } else {
        let mut aes_ctx = AesContext::new();
        aes_ctx.set_key(key);

        let ciph_blocks = cipher_data.chunks_exact(AES_BLOCK);
        let plain_blocks = plain_data.chunks_exact_mut(AES_BLOCK);

        for (ciph_block, plain_block) in ciph_blocks.zip(plain_blocks) {
            aes_ctx.decrypt_16_byte_block(ciph_block.try_into().unwrap(), plain_block);
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_split() {
        let word = 0x1122_3344;
        let exp_bytes = [0x11, 0x22, 0x33, 0x44];
        let manual_bytes = [
            (word >> 24) as u8,
            (word >> 16) as u8,
            (word >> 8) as u8,
            word as u8,
        ];

        assert_eq!(split_into_4_bytes(word), exp_bytes);
        assert_eq!(split_into_4_bytes(word), manual_bytes);
        assert_eq!(manual_bytes, exp_bytes);
    }

    #[test]
    #[rustfmt::skip]
    fn test_block_encryption() {
        let mut aes = AesContext::new();
        let key = [0xff; AES_KEY];

        aes.set_key(&key);

        let plain = [0x11; AES_BLOCK];
        let exp_cipher = [
            0xf1, 0x9f, 0xd2, 0xd2, 0xba, 0x1c, 0x22, 0xe1,
            0x6d, 0xc1, 0xfe, 0x1b, 0x4b, 0x43, 0xd5, 0x30
        ]; 

        let mut cipher = [0u8; AES_BLOCK];
        aes.encrypt_16_byte_block(&plain, cipher.as_mut());

        assert_eq!(cipher, exp_cipher, "cipher: {:x?}, expected: {:x?}", cipher, exp_cipher);
    }

    #[test]
    #[rustfmt::skip]
    fn test_block_decryption() {
        let mut aes = AesContext::new();
        let key = [0xff; AES_KEY];

        aes.set_key(&key);

        let cipher = [
            0xf1, 0x9f, 0xd2, 0xd2, 0xba, 0x1c, 0x22, 0xe1,
            0x6d, 0xc1, 0xfe, 0x1b, 0x4b, 0x43, 0xd5, 0x30
        ]; 
        let exp_plain = [0x11; AES_BLOCK];

        let mut plain = [0u8; AES_BLOCK];
        aes.decrypt_16_byte_block(&cipher, plain.as_mut());

        assert_eq!(plain, exp_plain, "plain: {:x?}, expected: {:x?}", plain, exp_plain);
    }

    #[test]
    #[rustfmt::skip]
    fn test_encryption() -> Result<()> {
        let key = [0xff; AES_KEY];

        let plain = [0x11; AES_BLOCK * 2];
        let exp_cipher = [
            0xf1, 0x9f, 0xd2, 0xd2, 0xba, 0x1c, 0x22, 0xe1,
            0x6d, 0xc1, 0xfe, 0x1b, 0x4b, 0x43, 0xd5, 0x30,
            0xf1, 0x9f, 0xd2, 0xd2, 0xba, 0x1c, 0x22, 0xe1,
            0x6d, 0xc1, 0xfe, 0x1b, 0x4b, 0x43, 0xd5, 0x30
        ]; 

        let cipher = aes_encrypt(&key, &plain)?;

        assert_eq!(cipher, exp_cipher, "cipher: {:x?}, expected: {:x?}", cipher, exp_cipher);

        // Check that plaintext that is not a multiple of AES_BLOCK is rejected
        assert!(aes_encrypt(&key, &[0u8; 17]).is_err());

        Ok(())
    }

    #[test]
    #[rustfmt::skip]
    fn test_decryption() -> Result<()> {
        let key = [0xff; AES_KEY];

        let cipher = [
            0xf1, 0x9f, 0xd2, 0xd2, 0xba, 0x1c, 0x22, 0xe1,
            0x6d, 0xc1, 0xfe, 0x1b, 0x4b, 0x43, 0xd5, 0x30,
            0xf1, 0x9f, 0xd2, 0xd2, 0xba, 0x1c, 0x22, 0xe1,
            0x6d, 0xc1, 0xfe, 0x1b, 0x4b, 0x43, 0xd5, 0x30
        ]; 
        let exp_plain = [0x11; AES_BLOCK * 2];

        let plain = aes_decrypt(&key, &cipher)?;

        assert_eq!(plain, exp_plain, "plain: {:x?}, expected: {:x?}", plain, exp_plain);

        // Check that ciphertext that is not a multiple of AES_BLOCK is rejected
        assert!(aes_decrypt(&key, &[0u8; 17]).is_err());

        Ok(())
    }
}