sql-cli 1.62.0

SQL query tool for CSV/JSON with both interactive TUI and non-interactive CLI modes - perfect for exploration and automation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
![Description](docs/images/screenshot-20250928-094517.png)

# SQL CLI - Powerful CSV/JSON Query Tool with Interactive TUI & CLI Modes

**A vim-inspired SQL query tool for CSV and JSON files. Features both an interactive terminal UI for data exploration and a non-interactive CLI mode for scripting and automation.**

### ✨ Try it now - Copy and paste this into your terminal:

```bash
sql-cli -q "WITH lines AS (SELECT line, ROW_NUMBER() OVER () as n, COUNT(*) OVER () as total FROM ASCII_ART('sql-cli')) SELECT ANSI_RGB(255 - (255 * (n - 1) / (total - 1)), 0 + (255 * (n - 1) / (total - 1)), 255, line) FROM lines" -o tsv
```
![Description](docs/images/screenshot-20251021-194821.png)

<details>
<summary>🌈 Click to see more gradient options</summary>

```bash
# Cyan-to-Blue (professional/tech)
sql-cli -q "WITH lines AS (SELECT line, ROW_NUMBER() OVER () as n, COUNT(*) OVER () as total FROM ASCII_ART('sql-cli')) SELECT ANSI_RGB(0, 255 - (255 * (n - 1) / (total - 1)), 255, line) FROM lines" -o tsv

# Fire gradient (red-to-yellow)
sql-cli -q "WITH lines AS (SELECT line, ROW_NUMBER() OVER () as n, COUNT(*) OVER () as total FROM ASCII_ART('sql-cli')) SELECT ANSI_RGB(255, 0 + (255 * (n - 1) / (total - 1)), 0, line) FROM lines" -o tsv

# Ocean gradient (deep blue to cyan)
sql-cli -q "WITH lines AS (SELECT line, ROW_NUMBER() OVER () as n, COUNT(*) OVER () as total FROM ASCII_ART('sql-cli')) SELECT ANSI_RGB(0, ROUND(128 + (127 * (n - 1) / (total - 1))), ROUND(200 + (55 * (n - 1) / (total - 1))), line) FROM lines" -o tsv

# Green Matrix (hacker aesthetic)
sql-cli -q "WITH lines AS (SELECT line, ROW_NUMBER() OVER () as n, COUNT(*) OVER () as total FROM ASCII_ART('sql-cli')) SELECT ANSI_RGB(0, ROUND(150 + (105 * (n - 1) / (total - 1))), 0, line) FROM lines" -o tsv
```

</details>

---

![SQL-CLI Overview](sql-cli/demos/overview.gif)

## 🚀 Why SQL CLI?

**Think `less` for CSV files, but with SQL superpowers:**
- **🎯 Two Modes**: Interactive TUI for exploration, non-interactive for scripting & automation
- **📁 Point & Query**: Drop any CSV/JSON file and immediately start querying  
- **⚡ Lightning Fast**: In-memory engine - 8ms SELECT on 100K rows ([benchmarks]PERFORMANCE.md)
- **🎮 Vim-Inspired**: Modal editing, `hjkl` navigation, powerful keyboard shortcuts
- **🧠 Smart Completion**: Context-aware SQL completion with fuzzy matching
- **🔍 Advanced Filtering**: Regex, fuzzy search, complex WHERE clauses
- **📊 Rich SQL Features**: Date functions, string manipulation, mathematical operations
- **📤 Multiple Outputs**: CSV, JSON, TSV, or pretty tables - perfect for pipelines

![SQL-CLI CSV Demo](sql-cli/demos/overview-optimized.gif)

## ⚡ Quick Start

```bash
# Install from Cargo  
cargo install sql-cli

# Point at any CSV or JSON file
sql-cli data.csv

# Immediately start querying with full SQL support
SELECT * FROM data WHERE amount > 1000 ORDER BY date DESC LIMIT 10
```

## 🎯 Three Powerful Modes

### 🖥️ **Interactive TUI Mode** (Default)
Launch the full vim-inspired terminal interface for data exploration:

![Description](docs/images/screenshot-20250920-211407.png)
```bash
# Interactive mode - explore your data with vim keybindings
sql-cli data.csv
sql-cli trades.json

# Navigate with hjkl, search with /, execute queries interactively
```

### 📝 **Neovim Plugin Mode** (Advanced)
A sophisticated Neovim plugin provides an IDE-like experience for SQL development:

![Description](docs/images/screenshot-20250920-210319.png)

![Description](docs/images/screenshot-20251011-204209.png)

```vim
" Execute queries directly from Neovim with intelligent features:
" - Visual selection execution
" - Function documentation (K for help)
" - Query navigation (]q, [q)
" - Live results in split panes
" - CSV/JSON export capabilities
" - Intelligent autocompletion (columns, functions, keywords)
" - Schema inspection with type inference
" - NEW: SQL Refactoring & Code Generation Tools
```

**🆕 New Refactoring Features:**
- **Smart CASE Generation** - Generate CASE statements from actual data values or ranges
- **Column Explorer** - Preview distinct values before writing queries (`\sD`)
- **Auto-detect Data** - Intelligently finds data files from context
- **Range Banding** - Create equal-width bands for numeric data
- **Window Functions** - Interactive wizard for complex analytics

See [nvim-plugin/README.md](nvim-plugin/README.md) for installation and full feature list.

### 🚀 **Non-Interactive Query Mode**
Execute SQL queries directly from the command line - perfect for scripting and automation:

![Description](docs/images/screenshot-20251012-192832.png)

![Description](docs/images/screenshot-20250920-212340.png)

![Description](docs/images/screenshot-20250921-104620.png)

![Description](docs/images/screenshot-20250921-110026.png)

![Description](docs/images/screenshot-20251011-202603.png)

```bash
# Run a query and get CSV output
sql-cli data.csv -q "SELECT * FROM data WHERE price > 100"

# Output as JSON
sql-cli data.csv -q "SELECT id, name, value FROM data" -o json

# Pretty table format
sql-cli data.csv -q "SELECT * FROM data LIMIT 10" -o table

# Save results to file
sql-cli data.csv -q "SELECT * FROM data WHERE status='active'" -O results.csv

# Execute SQL from a file
sql-cli large_dataset.json -f complex_analysis.sql -o table

# Limit output rows
sql-cli data.csv -q "SELECT * FROM data" -o json -l 100
```

#### **Non-Interactive Options:**
- `-q, --query <SQL>` - Execute SQL query directly
- `-f, --query-file <file>` - Execute SQL from file
- `-o, --output <format>` - Output format: `csv`, `json`, `table`, `tsv` (default: csv)
- `-O, --output-file <file>` - Write results to file
- `-l, --limit <n>` - Limit output to n rows
- `--styled` - Apply color styling to table output (uses ~/.config/sql-cli/styles.yaml)
- `--style-file <file>` - Custom YAML style configuration file
- `--table-style <style>` - Table border style (default, ascii, utf8, markdown, etc.)
- `--case-insensitive` - Case-insensitive string matching
- `--auto-hide-empty` - Auto-hide empty columns

#### **Use Cases:**
```bash
# Data pipeline integration
sql-cli raw_data.csv -q "SELECT * FROM raw_data WHERE valid=1" | process_further.sh

# Automated reporting
sql-cli sales.csv -f monthly_report.sql -o json > report_$(date +%Y%m).json

# Quick data analysis
sql-cli logs.csv -q "SELECT COUNT(*) as errors FROM logs WHERE level='ERROR'" -o table

# Data cleaning
sql-cli messy_data.csv -q "SELECT * FROM messy_data WHERE email.EndsWith('.com')" -O clean_data.csv

# Complex calculations
sql-cli finances.csv -q "SELECT date, amount * (1 + tax_rate) as total FROM finances" -o table
```

## 💪 Powerful SQL Engine Features

### 🔥 **Core SQL + Modern Extensions**
Your SQL CLI combines traditional SQL with modern LINQ-style methods and advanced functions:

```sql
-- Traditional SQL with modern LINQ methods
SELECT 
    customer_name.Trim() as name,
    email.EndsWith('.com') as valid_email,
    ROUND(price * quantity, 2) as total,
    DATEDIFF('day', order_date, NOW()) as days_ago
FROM orders 
WHERE customer_name.Contains('corp')
  AND price BETWEEN 100 AND 1000
  AND order_date > DATEADD('month', -6, TODAY())
ORDER BY total DESC 
LIMIT 25
```

### 📊 **Advanced Functions Library**

#### **Date & Time Functions**
```sql
-- Comprehensive date handling with multiple format support
SELECT 
    NOW() as current_time,                    -- 2024-08-31 15:30:45
    TODAY() as current_date,                  -- 2024-08-31  
    DATEDIFF('day', '2024-01-01', order_date) as days_since_year,
    DATEADD('month', 3, ship_date) as warranty_expires
FROM orders
WHERE DATEDIFF('year', created_date, NOW()) <= 2
```

**Supported Date Formats:**
- ISO: `2024-01-15`, `2024-01-15 14:30:00`
- US: `01/15/2024`, `01/15/2024 2:30 PM` 
- EU: `15/01/2024`, `15/01/2024 14:30`
- Excel: `15-Jan-2024`, `Jan 15, 2024`
- Full: `January 15, 2024`, `15 January 2024`

#### **Mathematical Functions**  
```sql
-- Rich mathematical operations
SELECT 
    ROUND(price * 1.08, 2) as taxed_price,
    SQRT(POWER(width, 2) + POWER(height, 2)) as diagonal,
    MOD(id, 100) as batch_number,
    ABS(actual - target) as variance,
    POWER(growth_rate, years) as compound_growth
FROM products
WHERE SQRT(area) BETWEEN 10 AND 50
```

**Available Math Functions:**
- **Basic:** `ROUND`, `ABS`, `FLOOR`, `CEILING`, `MOD`, `QUOTIENT`, `POWER`, `SQRT`, `EXP`, `LN`, `LOG`, `LOG10`
- **Prime Numbers:** `PRIME(n)` - nth prime, `IS_PRIME(n)` - primality test, `PRIME_COUNT(n)` - count primes ≤ n, `NEXT_PRIME(n)`, `PREV_PRIME(n)`
- **Constants:** `PI()`, `E()` - mathematical constants
- **π Digits:** `PI_DIGITS(n)` - π to N decimal places (up to 10,000), `PI_DIGIT(n)` - Nth decimal digit of π


```
sql-cli -q "select sum_n(value) as triangle from range(1,10)"
```

```sql
-- use distinct to only select unique values
sql-cli -q "select distinct value % 4 from range(1,50)"
```

```sql
-- can use a range cte to select primes
sql-cli -q "WITH primes as (select is_prime(value) as is_p, value as n from range(2,100)) select n from primes where is_p = true "
```

```sql
-- sql-cli data/numbers_1_to_100.csv -f find_primes_1_to_100.sql -o table
with is_prime as 
  (
    select 
      n as n,
      is_prime(n) as n_prime 
    from numbers
  ) 
  select n,n_prime 
    from is_prime 
    where n_prime = true;
  go
```

```sql
-- Prime number operations
SELECT PRIME(100);  -- 100th prime = 541
SELECT IS_PRIME(17), IS_PRIME(100);  -- true, false
SELECT PRIME_COUNT(1000);  -- 168 primes under 1000
SELECT NEXT_PRIME(100), PREV_PRIME(100);  -- 101, 97
```

**Fun with π Digits:**
```bash
# Get first 50 decimal digits of π with their positions
sql-cli -q "SELECT value as position, PI_DIGIT(value) as digit FROM RANGE(1, 50)" -o table --table-style markdown
```

Output shows π = 3.1415926535897932384626433832795028841971693993751...

#### **Comparison & NULL Functions**
```sql
-- Find maximum/minimum across multiple columns
SELECT 
    id,
    GREATEST(salary, bonus, commission) as max_income,
    LEAST(jan_sales, feb_sales, mar_sales) as worst_month,
    GREATEST(0, balance) as positive_balance  -- Clamp negative to zero
FROM employees;

-- Handle NULL values elegantly
SELECT 
    COALESCE(phone, mobile, email, 'No contact') as primary_contact,
    NULLIF(total, 0) as non_zero_total,  -- Returns NULL if total is 0
    COALESCE(discount, 0) * price as discounted_price
FROM orders;

-- Mixed type comparisons (int/float coercion)
SELECT 
    GREATEST(10, 15.5, 8) as max_val,     -- Returns 15.5
    LEAST('apple', 'banana', 'cherry'),   -- Returns 'apple'
    GREATEST(date1, date2, date3) as latest_date
FROM data;
```

**Comparison Functions:**
- `GREATEST(val1, val2, ...)` - Returns maximum value from list
- `LEAST(val1, val2, ...)` - Returns minimum value from list
- `COALESCE(val1, val2, ...)` - Returns first non-NULL value
- `NULLIF(val1, val2)` - Returns NULL if values are equal, else returns val1

#### **🧮 Scientific Calculator Mode with DUAL Table**
```sql
-- Use DUAL table for calculations (Oracle-compatible)
SELECT PI() * POWER(5, 2) as circle_area FROM DUAL;
SELECT DEGREES(PI()/2) as right_angle FROM DUAL;

-- Scientific notation support
SELECT 1e-10 * 3.14e5 as tiny_times_huge FROM DUAL;
SELECT 6.022e23 / 1000 as molecules_per_liter FROM DUAL;

-- Physics constants for scientific computing
SELECT 
    C() as speed_of_light,        -- 299792458 m/s
    ME() as electron_mass,        -- 9.109e-31 kg
    PLANCK() as planck_constant,  -- 6.626e-34 J⋅s
    NA() as avogadro_number       -- 6.022e23 mol⁻¹
FROM DUAL;

-- Complex physics calculations
SELECT PLANCK() * C() / 500e-9 as photon_energy_500nm FROM DUAL;
SELECT MP() / ME() as proton_electron_mass_ratio FROM DUAL;

-- No FROM clause needed for simple calculations
SELECT 2 + 2;
SELECT SQRT(2) * PI();
```

**Scientific Constants Available:**
- **Math**: `PI()`, `EULER()`, `TAU()`, `PHI()`, `SQRT2()`, `LN2()`, `LN10()`
- **Physics - Fundamental**: `C()`, `G()`, `PLANCK()`, `HBAR()`, `BOLTZMANN()`, `AVOGADRO()`, `R()`
- **Physics - Electromagnetic**: `E0()`, `MU0()`, `QE()`
- **Physics - Particles**: `ME()`, `MP()`, `MN()`, `AMU()`
- **Physics - Other**: `ALPHA()`, `RYDBERG()`, `SIGMA()`
- **Conversions**: `DEGREES(radians)`, `RADIANS(degrees)`

#### **String & Text Functions**
```sql
-- Advanced text manipulation
SELECT 
    TEXTJOIN(' | ', 1, first_name, last_name, department) as employee_info,
    name.Trim().Length() as clean_name_length,
    email.IndexOf('@') as at_position,
    description.StartsWith('Premium') as is_premium
FROM employees
WHERE name.Contains('manager') 
  AND email.EndsWith('.com')
  AND department.Trim() != ''
```

**String Functions & Methods:**

*Method Style (in WHERE clauses):*
- `column.Contains('text')` - Case-insensitive substring search
- `column.StartsWith('prefix')` - Case-insensitive prefix check
- `column.EndsWith('suffix')` - Case-insensitive suffix check
- `column.Length()` - Character count
- `column.IndexOf('substring')` - Find position (0-based, -1 if not found)
- `column.Trim()` - Remove leading/trailing spaces
- `column.TrimStart()` - Remove leading whitespace only
- `column.TrimEnd()` - Remove trailing whitespace only

*Function Style (anywhere):*
- `TOUPPER(text)`, `TOLOWER(text)` - Case conversion
- `TRIM(text)` - Remove whitespace
- `LENGTH(text)` - String length
- `CONTAINS(text, pattern)` - Check substring
- `STARTSWITH(text, prefix)`, `ENDSWITH(text, suffix)` - Pattern matching
- `SUBSTRING(text, start, length)` - Extract substring
- `REPLACE(text, old, new)` - Replace all occurrences

#### 🌈 **Terminal Color & Formatting Functions** (NEW!)

Make your terminal output beautiful with ANSI color and formatting functions! Perfect for highlighting errors, warnings, status indicators, and creating visually stunning data presentations.

![Description](docs/images/screenshot-20251018-235353.png)

```sql
-- Rainbow colors demonstration 🌈
SELECT
    ANSI_RGB(255, 0, 0, '● Red') || ', ' ||
    ANSI_RGB(255, 127, 0, '● Orange') || ', ' ||
    ANSI_RGB(255, 255, 0, '● Yellow') || ', ' ||
    ANSI_RGB(0, 255, 0, '● Green') || ', ' ||
    ANSI_RGB(0, 0, 255, '● Blue') || ', ' ||
    ANSI_RGB(75, 0, 130, '● Indigo') || ', ' ||
    ANSI_RGB(148, 0, 211, '● Violet') as rainbow;

-- Named colors for quick formatting
SELECT
    ANSI_COLOR('red', 'ERROR') as red_text,
    ANSI_COLOR('green', 'SUCCESS') as green_text,
    ANSI_COLOR('yellow', 'WARNING') as yellow_text,
    ANSI_COLOR('bright_blue', 'INFO') as info_text;

-- Background colors for emphasis
SELECT
    ANSI_BG('red', ' CRITICAL ') as alert,
    ANSI_BG('green', ' ACTIVE ') as status,
    ANSI_BG('yellow', ' PENDING ') as warning;

-- Text formatting
SELECT
    ANSI_BOLD('Bold Text') as bold,
    ANSI_ITALIC('Italic Text') as italic,
    ANSI_UNDERLINE('Important') as underline,
    ANSI_STRIKETHROUGH('Deprecated') as deprecated;
```

**Practical Example - Conditional Coloring:**
```sql
-- Color-code data based on values
SELECT
    order_id,
    CASE
        WHEN status = 'Active' THEN ANSI_COLOR('green', status)
        WHEN status = 'Warning' THEN ANSI_COLOR('yellow', status)
        WHEN status = 'Error' THEN ANSI_COLOR('red', status)
        ELSE status
    END as colored_status,
    CASE
        WHEN score >= 90 THEN ANSI_COLOR('bright_green', score)
        WHEN score >= 70 THEN ANSI_COLOR('yellow', score)
        ELSE ANSI_COLOR('red', score)
    END as colored_score
FROM data;

-- Combine formatting for emphasis
SELECT
    ANSI_BOLD(ANSI_COLOR('red', 'CRITICAL ERROR')) as alert,
    ANSI_ITALIC(ANSI_COLOR('blue', 'Note: Check logs')) as note;

-- Create visual separators
SELECT
    ANSI_RGB(255, 0, 0, '━') || ANSI_RGB(255, 127, 0, '━') ||
    ANSI_RGB(255, 255, 0, '━') || ANSI_RGB(0, 255, 0, '━') ||
    ANSI_RGB(0, 0, 255, '━') || ANSI_RGB(75, 0, 130, '━') ||
    ANSI_RGB(148, 0, 211, '━') as rainbow_divider;
```

**Available Color Functions:**
- `ANSI_COLOR(color_name, text)` - Apply foreground color
- `ANSI_BG(color_name, text)` - Apply background color
- `ANSI_RGB(r, g, b, text)` - True color RGB (0-255 each)
- `ANSI_RGB_BG(r, g, b, text)` - RGB background color

**Named Colors:** black, red, green, yellow, blue, magenta/purple, cyan, white, bright_* variants, gray/grey

**Formatting Functions:**
- `ANSI_BOLD(text)` - Bold text
- `ANSI_ITALIC(text)` - Italic text
- `ANSI_UNDERLINE(text)` - Underlined text
- `ANSI_BLINK(text)` - Blinking text
- `ANSI_REVERSE(text)` - Reverse video (swap fg/bg)
- `ANSI_STRIKETHROUGH(text)` - Strikethrough text

**Try it out:**
```bash
# Simple rainbow test
sql-cli -q "SELECT ANSI_RGB(255, 0, 0, '●') || ' ' || ANSI_RGB(255, 127, 0, '●') || ' ' || ANSI_RGB(255, 255, 0, '●') || ' ' || ANSI_RGB(0, 255, 0, '●') || ' ' || ANSI_RGB(0, 0, 255, '●') || ' ' || ANSI_RGB(75, 0, 130, '●') || ' ' || ANSI_RGB(148, 0, 211, '●') as rainbow" -o csv

# Full demo with all color features
sql-cli -f examples/ansi_colors_demo.sql
```

### 📊 **GROUP BY and Aggregation Support** (NEW!)

SQL CLI now supports GROUP BY queries with powerful aggregate functions, enabling complex data analysis and summarization:

#### **Aggregate Functions**
```sql
-- Basic aggregation with COUNT, SUM, AVG, MIN, MAX
SELECT 
    trader,
    COUNT(*) as trade_count,
    SUM(quantity) as total_volume,
    AVG(price) as avg_price,
    MIN(price) as min_price,
    MAX(price) as max_price
FROM trades
GROUP BY trader
ORDER BY total_volume DESC;

-- Multi-column grouping
SELECT 
    trader, 
    book,
    COUNT(*) as trades,
    SUM(quantity * price) as total_value
FROM trades
GROUP BY trader, book
ORDER BY trader, total_value DESC;

-- Filtering before grouping with WHERE
SELECT 
    region,
    product,
    SUM(revenue) as total_revenue
FROM sales
WHERE date > DATEADD('month', -3, TODAY())
GROUP BY region, product
ORDER BY total_revenue DESC;
```

**Supported Aggregate Functions:**
- `COUNT(*)` - Count all rows in group
- `COUNT(column)` - Count non-null values
- `SUM(expression)` - Sum of values (supports complex expressions)
- `AVG(expression)` - Average calculation
- `MIN(column)` - Minimum value in group
- `MAX(column)` - Maximum value in group

#### **Real-World GROUP BY Examples**
```sql
-- Trading desk performance analysis
SELECT 
    trader.Trim() as trader_name,
    COUNT(*) as total_trades,
    SUM(quantity) as total_shares,
    ROUND(AVG(price), 2) as avg_price,
    SUM(quantity * price) as total_value,
    MIN(trade_date) as first_trade,
    MAX(trade_date) as last_trade
FROM trades
WHERE trade_date >= DATEADD('day', -30, TODAY())
GROUP BY trader.Trim()
ORDER BY total_value DESC;

-- Product sales by category
SELECT 
    category,
    COUNT(DISTINCT product_id) as unique_products,
    SUM(units_sold) as total_units,
    ROUND(AVG(sale_price), 2) as avg_price,
    SUM(units_sold * sale_price) as revenue
FROM sales_data  
WHERE status = 'completed'
GROUP BY category
ORDER BY revenue DESC
LIMIT 10;

-- Daily aggregations with date functions
SELECT 
    DATE(transaction_time) as day,
    COUNT(*) as transaction_count,
    SUM(amount) as daily_total,
    AVG(amount) as avg_transaction
FROM transactions
WHERE transaction_time > DATEADD('week', -4, NOW())
GROUP BY DATE(transaction_time)
ORDER BY day DESC;
```

### 🎯 **Advanced Query Capabilities**

#### **Complex WHERE Clauses**
```sql
-- Sophisticated filtering with nested logic
SELECT * FROM financial_data
WHERE (category.StartsWith('equity') OR category.Contains('bond'))
  AND price BETWEEN 50 AND 500
  AND quantity NOT IN (0, 1)  
  AND trader_name.Length() > 3
  AND DATEDIFF('day', trade_date, settlement_date) <= 3
  AND commission NOT BETWEEN 0 AND 10
```

#### **Computed Columns & Expressions**
```sql
-- Complex calculations in SELECT
SELECT 
    -- Computed columns with aliases
    price * quantity * (1 - discount/100) as net_amount,
    ROUND((selling_price - cost_basis) / cost_basis * 100, 2) as profit_margin_pct,
    
    -- Nested function calls
    ROUND(SQRT(POWER(leg1, 2) + POWER(leg2, 2)), 3) as hypotenuse,
    
    -- Conditional logic with functions  
    CASE 
        WHEN price.Contains('.') THEN 'Decimal'
        WHEN MOD(ROUND(price, 0), 2) = 0 THEN 'Even'
        ELSE 'Odd'
    END as price_type
FROM trade_data
```

#### **Flexible ORDER BY**
```sql
-- Order by computed expressions and functions
SELECT *, price * quantity as total_value
FROM orders
ORDER BY 
    customer_name.Trim(),                    -- LINQ method in ORDER BY
    ROUND(price * quantity, 2) DESC,         -- Mathematical expression
    DATEDIFF('day', order_date, NOW()) ASC,  -- Date function
    total_value DESC                         -- Computed column alias
LIMIT 100
```

#### **Common Table Expressions (CTEs)**
```sql
-- CTEs enable powerful multi-stage queries with labeled intermediate results
WITH
    high_value_orders AS (
        SELECT customer_id, SUM(amount) as total_spent
        FROM orders
        WHERE amount > 100
        GROUP BY customer_id
    ),
    top_customers AS (
        -- CTEs can reference previous CTEs!
        SELECT * FROM high_value_orders
        WHERE total_spent > 1000
        ORDER BY total_spent DESC
    )
SELECT * FROM top_customers
WHERE total_spent BETWEEN 5000 AND 10000;

-- Window functions in CTEs for "top N per group" patterns
WITH ranked_products AS (
    SELECT
        category,
        product_name,
        sales,
        ROW_NUMBER() OVER (PARTITION BY category ORDER BY sales DESC) as rank
    FROM products
)
SELECT * FROM ranked_products WHERE rank <= 3;
```

> 📚 **See `examples/*.sql` for comprehensive CTE patterns including cascading CTEs, time series analysis, and performance tier calculations!**

#### **🌐 Web Data Integration & Environment Variables**
Fetch data directly from REST APIs and integrate with local CSV/JSON files using WEB CTEs:

```sql
-- Fetch data from REST APIs with custom headers for authentication
WITH WEB api_data AS (
    URL 'https://api.example.com/users'
    FORMAT JSON
    HEADERS (
        'Authorization': 'Bearer ${API_TOKEN}',
        'Accept': 'application/json'
    )
)
SELECT
    user_id,
    name,
    email,
    created_at
FROM api_data
WHERE active = true
ORDER BY created_at DESC;

-- Join web data with local CSV files
WITH
    WEB api_users AS (
        URL 'https://api.example.com/users'
        FORMAT JSON
        HEADERS (
            'Authorization': 'Bearer ${API_TOKEN}'
        )
    ),
    local_employees AS (
        SELECT * FROM employees  -- Local CSV file
    )
SELECT
    api_users.user_id,
    api_users.name,
    local_employees.department,
    local_employees.salary
FROM api_users
LEFT JOIN local_employees ON api_users.user_id = local_employees.employee_id
WHERE local_employees.salary > 50000
ORDER BY api_users.name;

-- Multiple API endpoints in one query
WITH
    WEB posts AS (
        URL 'https://jsonplaceholder.typicode.com/posts'
        FORMAT JSON
    ),
    WEB users AS (
        URL 'https://jsonplaceholder.typicode.com/users'
        FORMAT JSON
    )
SELECT
    users.name AS author_name,
    users.email,
    COUNT(posts.id) as post_count,
    AVG(LENGTH(posts.body)) as avg_post_length
FROM posts
INNER JOIN users ON posts.userId = users.id
GROUP BY users.id, users.name, users.email
ORDER BY post_count DESC
LIMIT 10;
```

**Environment Variable Support:**
- Use `${VARIABLE_NAME}` syntax in HEADERS for authentication
- Perfect for API keys and sensitive tokens
- Set variables before running: `export API_TOKEN="your-token-here"`
- Variables are replaced securely before query execution

**WEB CTE Features:**
- **Syntax**: `WITH WEB table_name AS (URL 'url' FORMAT JSON HEADERS (...))`
- **URL Schemes**: Supports `http://`, `https://`, and `file://` for local files
- **Local Files**: Use `file://` URLs to load CSV/JSON files as CTEs
- **Custom Headers**: Use HEADERS block with key-value pairs (HTTP only)
- **Authentication**: `'Authorization': 'Bearer ${TOKEN}'` pattern
- **Multiple APIs**: Multiple WEB CTEs in the same query
- **JOIN with Local Data**: Seamlessly combine API data with CSV/JSON files
- **Format Support**: JSON and CSV (auto-detected or specified)
- **Examples**: See `examples/web_cte.sql`, `examples/web_cte_auth.sql`, and `examples/file_cte.sql`

### 📁 **File CTEs - Dynamic Local File Loading**
Load CSV and JSON files dynamically as CTEs without pre-registering them:

```sql
-- Load local CSV files using file:// URLs
WITH WEB sales AS (
    URL 'file://data/sales_data.csv'
    FORMAT CSV
)
SELECT region, SUM(sales_amount) as total
FROM sales
GROUP BY region;

-- Join multiple local files
WITH
    WEB customers AS (URL 'file://data/customers.csv'),
    WEB orders AS (URL 'file://data/orders.json' FORMAT JSON)
SELECT
    c.name,
    COUNT(o.order_id) as order_count
FROM customers c
LEFT JOIN orders o ON c.id = o.customer_id
GROUP BY c.name;

-- Mix local files with web APIs
WITH
    WEB local_data AS (URL 'file://data/products.csv'),
    WEB api_prices AS (URL 'https://api.example.com/prices' FORMAT JSON)
SELECT
    l.product_name,
    l.category,
    a.current_price
FROM local_data l
JOIN api_prices a ON l.product_id = a.id;
```

**File CTE Benefits:**
- No need to specify file on command line
- Dynamically load different files in the same query
- Mix and match local files with web APIs
- Reuse existing web CTE infrastructure
- Support for both absolute and relative paths

### 🧠 **Smart Type Handling**
- **Automatic Coercion**: String methods work on numbers (`quantity.Contains('5')`)
- **Flexible Parsing**: Multiple date formats automatically recognized
- **NULL Handling**: Graceful handling of missing/empty values
- **Error Recovery**: Helpful suggestions for column name typos

### **Performance Features**
- **Blazing Fast**: 8ms SELECT queries on 100K rows - [See benchmarks]PERFORMANCE.md
- **In-Memory Processing**: Eliminates I/O overhead for datasets up to 100K rows
- **Sub-Second Operations**: Most queries complete in under 1 second even at 100K rows
- **Optimized JOINs**: All JOIN types execute in under 40ms at 100K rows
- **Efficient Aggregations**: GROUP BY operations 10x faster than earlier versions
- **Smart Caching**: Query results cached for instant re-filtering
- **See [PERFORMANCE.md]PERFORMANCE.md for detailed benchmarks**

## 🖥️ Vim-Inspired Terminal UI

### **Lightning-Fast Navigation**
- **Help**: Press `F1` for comprehensive help and keybindings
- **Vim Keybindings**: `hjkl` movement, `g`/`G` for top/bottom, `/` and `?` for search
- **Column Operations**: Sort (`s`), Pin (`p`), Hide (`H`) columns with single keystrokes  
- **Smart Search**: Column search, data search, fuzzy matching with `n`/`N` navigation
- **Virtual Scrolling**: Handle datasets with 1000+ rows and 190+ columns efficiently
- **Mode Switching**: Insert (`i`), Append (`a`/`A`), Command mode (`Esc`)

### **Power User Features**
- **Key History**: See your last 10 keystrokes with 2s fade
- **Query Caching**: Results cached for instant re-filtering
- **Export**: `Ctrl+S` to save current view as CSV
- **Debug View**: Press `F5` to see internal state and diagnostics

## 🚀 **Why Choose SQL CLI?**

### **🔥 Unique Advantages**
| Feature | SQL CLI | csvlens | csvkit | Other Tools |
|---------|---------|---------|---------|-------------|
| **LINQ Methods** |`.Contains()`, `.StartsWith()` ||||
| **Date Functions** |`DATEDIFF`, `DATEADD`, `NOW()` || Limited ||
| **Math Functions** |`ROUND`, `SQRT`, `POWER`, Primes || Basic ||
| **GROUP BY & Aggregates** | ✅ Full support with COUNT, SUM, AVG || Basic | Limited |
| **Vim Navigation** | ✅ Full vim-style | Basic |||
| **Computed Columns** |`price * qty as total` ||| Limited |
| **Smart Completion** | ✅ Context-aware SQL ||||
| **Multiple Date Formats** | ✅ Auto-detection ||||

### **🎯 Perfect For**
- **Data Analysts**: Complex calculations with LINQ-style methods
- **Developers**: Vim navigation + SQL power for log analysis  
- **Financial Teams**: Advanced date arithmetic and mathematical functions
- **Anyone**: Who wants `less` for CSV files but with SQL superpowers

## 🔗 **Real-World Examples**

```sql
-- Financial Analysis with GROUP BY
SELECT 
    trader.Trim() as trader_name,
    ROUND(SUM(price * quantity), 2) as total_volume,
    COUNT(*) as trade_count,
    ROUND(AVG(price), 4) as avg_price,
    DATEDIFF('day', MIN(trade_date), MAX(trade_date)) as trading_span
FROM trades
WHERE settlement_date > DATEADD('month', -3, TODAY())
  AND counterparty.Contains('BANK')
  AND commission BETWEEN 5 AND 100
  AND NOT status.StartsWith('CANCEL')
GROUP BY trader.Trim()
ORDER BY total_volume DESC
LIMIT 20;

-- Log Analysis  
SELECT 
    log_level,
    message.IndexOf('ERROR') as error_position,
    TEXTJOIN(' | ', 1, timestamp, service, user_id) as context,
    ROUND(response_time_ms / 1000.0, 3) as response_seconds
FROM application_logs
WHERE timestamp > DATEADD('hour', -24, NOW())
  AND (message.Contains('timeout') OR message.Contains('exception'))
  AND response_time_ms BETWEEN 1000 AND 30000
ORDER BY timestamp DESC;
```

## 📚 Examples Gallery

Explore the full power of SQL CLI with our comprehensive examples collection in the `examples/` directory:

### 🎯 Run Examples

```bash
# Run any example directly
sql-cli -f examples/prime_numbers.sql
sql-cli -f examples/physics_constants.sql
sql-cli -f examples/string_functions.sql

# Or with your own data
sql-cli your_data.csv -f examples/group_by_aggregates.sql
```

### 📂 Available Example Files

- **`prime_numbers.sql`** - Prime number theory functions: IS_PRIME(), NTH_PRIME(), PRIME_PI()
- **`physics_constants.sql`** - Scientific constants and calculations using built-in physics values
- **`chemical_formulas.sql`** - Parse chemical formulas and calculate molecular masses
- **`string_functions.sql`** - Comprehensive text manipulation, regex, and hashing
- **`date_time_functions.sql`** - Date arithmetic, formatting, and time-based analysis
- **`group_by_aggregates.sql`** - GROUP BY with HAVING clause and complex aggregations
- **`math_functions.sql`** - Mathematical operations from basic to advanced
- **`least_label.sql`** - Find minimum labeled values with LEAST_LABEL()
- **`case_test_mass_fns.sql`** - CASE expressions with physics constants

### 🚀 Quick Feature Showcase

```sql
-- Combine multiple advanced features in one query
SELECT 
    trader_name,
    COUNT(*) as trade_count,
    SUM(quantity) as total_volume,
    AVG(price) as avg_price,
    ATOMIC_MASS('C8H10N4O2') as caffeine_mass,            -- Chemistry
    IS_PRIME(COUNT(*)) as is_prime_count,                  -- Prime check
    DATEDIFF('day', MIN(trade_date), NOW()) as days_trading, -- Date math
    MD5(trader_name) as trader_hash,                       -- Hashing
    MASS_EARTH() / MASS_MOON() as earth_moon_ratio        -- Physics
FROM trades
WHERE trade_date >= DATEADD('month', -3, TODAY())
GROUP BY trader_name
HAVING COUNT(*) > 10 AND SUM(quantity) > 1000
ORDER BY total_volume DESC;
```

Check out the [examples README](examples/README.md) for detailed documentation and more examples.

## 📦 Installation

### Install with Cargo

```bash
# Install directly from git
cargo install --git https://github.com/YOUR_USERNAME/sql-cli.git

# Or install from crates.io (when published)
cargo install sql-cli
```

### Build from Source

```bash
git clone https://github.com/YOUR_USERNAME/sql-cli.git
cd sql-cli
cargo build --release
./target/release/sql-cli
```

## 🎮 Usage

### Basic Usage
```bash
# Load CSV file
sql-cli data.csv

# Load JSON file  
sql-cli sales.json

# With enhanced mode
sql-cli --enhanced large_dataset.csv
```

### Key Bindings
- **Navigation**: `hjkl` (vim-style), `g`/`G` (top/bottom)
- **Search**: `/` (column search), `?` (data search), `n`/`N` (next/prev)
- **Columns**: `s` (sort), `p` (pin), `H` (hide)  
- **Modes**: `i` (insert), `a`/`A` (append), `Esc` (normal)
- **Export**: `Ctrl+S` (save current view as CSV)

### Advanced SQL Examples

```sql
-- Date functions and complex filtering
SELECT * FROM data 
WHERE created_date > DATEADD(MONTH, -3, NOW()) 
  AND status.Contains('active')
ORDER BY updated_date DESC

-- Aggregations and grouping
SELECT category, COUNT(*) as count, AVG(amount) as avg_amount
FROM sales 
GROUP BY category 
HAVING count > 10

-- String manipulation
SELECT UPPER(name) as name_upper, 
       LEFT(description, 50) as desc_preview
FROM products
WHERE name.StartsWith('A')
```

## 📊 Terminal Charts (NEW!)

SQL CLI now includes a powerful **standalone charting tool** (`sql-cli-chart`) that creates terminal-based visualizations of your SQL query results. Perfect for time series analysis, trend visualization, and data exploration.

### Chart Tool Usage

```bash
# Basic time series chart
sql-cli-chart data.csv -q "SELECT time, value FROM data" -x time -y value -t "My Chart"

# Filter data with SQL WHERE clause
sql-cli-chart trades.csv \
  -q "SELECT timestamp, price FROM trades WHERE symbol = 'AAPL'" \
  -x timestamp -y price -t "AAPL Price Chart"
```

### Real-World Example: VWAP Trading Analysis

Visualize algorithmic trading data with SQL filtering to focus on specific patterns:

```bash
# Chart fill volume progression for CLIENT orders only
sql-cli-chart data/production_vwap_final.csv \
  -q "SELECT snapshot_time, filled_quantity FROM production_vwap_final WHERE order_type LIKE '%CLIENT%'" \
  -x snapshot_time -y filled_quantity \
  -t "CLIENT Order Fill Progression"

# Compare with ALL orders (shows chaotic "Christmas tree" pattern)
sql-cli-chart data/production_vwap_final.csv \
  -q "SELECT snapshot_time, filled_quantity FROM production_vwap_final" \
  -x snapshot_time -y filled_quantity \
  -t "All Orders - Mixed Pattern"
```

**The Power of SQL Filtering**: The first query filters to show only CLIENT orders (991 rows), displaying a clean upward progression. The second shows all 3320 rows including ALGO and SLICE orders, creating a noisy pattern. This demonstrates how SQL queries let you focus on exactly the data patterns you want to visualize.

### Interactive Chart Controls

Once the chart opens, use these vim-like controls:
- **hjkl** - Pan left/down/up/right
- **+/-** - Zoom in/out
- **r** - Reset view to auto-fit
- **q/Esc** - Quit

### Example Scripts

Ready-to-use chart examples are in the `scripts/` directory:

```bash
# VWAP average price over time
./scripts/chart-vwap-price.sh

# Fill volume progression
./scripts/chart-vwap-volume.sh

# Compare different order types
./scripts/chart-vwap-algo-comparison.sh
```

### Chart Features

- **SQL Query Integration**: Use full SQL power to filter and transform data before charting
- **Smart Auto-Scaling**: Automatically adapts Y-axis range for optimal visibility
- **Time Series Support**: Automatic timestamp parsing and time-based X-axis
- **Interactive Navigation**: Pan and zoom to explore your data
- **Terminal Native**: Pure terminal graphics, no GUI dependencies

## 🎨 Styled Table Output (NEW!)

SQL CLI now supports **terminal-colored table output** with customizable YAML styling rules. Perfect for financial data, trading systems, and any scenario where color coding helps identify patterns at a glance.

### Quick Start

```bash
# Enable colored output with default style file
sql-cli data.csv -q "SELECT * FROM data" -o table --styled

# Use custom style configuration
sql-cli trades.csv -q "SELECT * FROM trades" -o table --styled --style-file my-styles.yaml
```

### Style Configuration

Create a YAML file (default: `~/.config/sql-cli/styles.yaml`) to define your color rules:

```yaml
version: 1

# Color cells based on exact values
columns:
  Side:
    - value: "Buy"
      fg_color: blue
      bold: true
    - value: "Sell"
      fg_color: red
      bold: true

  Status:
    - value: "Active"
      fg_color: green
    - value: "Inactive"
      fg_color: dark_grey

# Color cells based on numeric ranges
numeric_ranges:
  LatencyMs:
    - condition: "< 100"
      fg_color: green
    - condition: ">= 100 AND < 300"
      fg_color: yellow
    - condition: ">= 300"
      fg_color: red
      bold: true

  ExecutionPrice:
    - condition: "> 400"
      fg_color: cyan
      bold: true
    - condition: "<= 300"
      fg_color: dark_cyan

# Color cells based on regex patterns
patterns:
  - regex: "^ERROR"
    fg_color: red
    bold: true
  - regex: "^WARN"
    fg_color: yellow

# Default header styling
defaults:
  header_color: white
  header_bold: true
```

### Rule Types

**1. Column Rules** - Exact value matching:
```yaml
columns:
  Status:
    - value: "Filled"
      fg_color: green
    - value: "Rejected"
      fg_color: red
      bold: true
```

**2. Numeric Range Rules** - Condition-based styling:
```yaml
numeric_ranges:
  PnL:
    - condition: "> 0"
      fg_color: green
      bold: true
    - condition: "< 0"
      fg_color: red
      bold: true
    - condition: "== 0"
      fg_color: dark_grey
```

**3. Pattern Rules** - Regex matching:
```yaml
patterns:
  - regex: "ALGO-[0-9]+"
    fg_color: cyan
  - regex: "^INFO"
    fg_color: blue
```

### Available Colors

**Basic Colors**: red, green, blue, yellow, cyan, magenta, white, black

**Dark Variants**: dark_red, dark_green, dark_blue, dark_yellow, dark_cyan, dark_magenta

**Grays**: dark_grey, dark_gray, grey, gray

### Real-World Examples

**Financial Trading Dashboard**:
```bash
# Color-code buy/sell orders with latency thresholds
sql-cli executions.csv -q "
  SELECT Side, ExecutionPrice, LatencyMs, Status
  FROM executions
  WHERE trade_date = TODAY()
" -o table --styled --table-style utf8
```

With appropriate styling rules:
- **Buy orders**: Blue text, bold
- **Sell orders**: Red text, bold
- **Low latency** (< 100ms): Green
- **Medium latency** (100-300ms): Yellow
- **High latency** (> 300ms): Red, bold

**Log Analysis**:
```bash
# Highlight errors and warnings
sql-cli app.log -q "
  SELECT timestamp, level, message
  FROM app
  WHERE level IN ('ERROR', 'WARN', 'INFO')
" -o table --styled
```

**Performance Monitoring**:
```yaml
numeric_ranges:
  ResponseTimeMs:
    - condition: "< 100"
      fg_color: green
    - condition: ">= 500"
      fg_color: red
      bold: true

  SuccessRate:
    - condition: ">= 0.95"
      fg_color: green
      bold: true
    - condition: "< 0.80"
      fg_color: red
```

### Features

- **Composable Rules**: Multiple rules can apply (column → numeric → pattern priority)
- **YAML Configuration**: Easy to edit, version control, and share
- **Works with All Table Styles**: Compatible with ASCII, UTF8, Markdown, etc.
- **Non-Breaking**: Opt-in via `--styled` flag
- **Flexible Conditions**: Supports `<`, `<=`, `>`, `>=`, `==`, and compound conditions with `AND`
- **Case-Insensitive Colors**: `red`, `Red`, `RED` all work

### CLI Options

- `--styled` - Enable color styling (uses `~/.config/sql-cli/styles.yaml` by default)
- `--style-file <PATH>` - Use custom style configuration file
- `--table-style <style>` - Choose table border style (works with styling)

### Tips

1. **Start Simple**: Begin with column rules for categorical data
2. **Use Numeric Ranges**: Perfect for KPIs, latencies, prices
3. **Combine with Table Styles**: Try `--table-style utf8` for beautiful Unicode borders
4. **Version Control**: Check your styles.yaml into git for team consistency
5. **Multiple Files**: Create different style files for different use cases

## 🔄 Unit Conversions

SQL CLI includes a comprehensive unit conversion system accessible through the `CONVERT()` function. Convert between 150+ units across 8 categories, perfect for scientific calculations and data analysis.

### Basic Syntax
```sql
SELECT CONVERT(value, 'from_unit', 'to_unit') FROM DUAL
```

### Supported Categories & Examples

#### **Length Conversions**
```sql
-- Metric to Imperial
SELECT CONVERT(100, 'km', 'miles') as distance FROM DUAL;     -- 62.14 miles
SELECT CONVERT(5.5, 'meters', 'feet') as height FROM DUAL;     -- 18.04 feet
SELECT CONVERT(25, 'cm', 'inches') as width FROM DUAL;         -- 9.84 inches

-- Nautical
SELECT CONVERT(10, 'nautical_mile', 'km') as distance FROM DUAL;  -- 18.52 km
```

#### **Mass/Weight Conversions**
```sql
-- Common conversions
SELECT CONVERT(75, 'kg', 'lb') as weight FROM DUAL;            -- 165.35 pounds
SELECT CONVERT(16, 'oz', 'grams') as weight FROM DUAL;         -- 453.59 grams
SELECT CONVERT(1, 'metric_ton', 'pounds') as heavy FROM DUAL;  -- 2204.62 lbs
```

#### **Temperature Conversions**
```sql
-- Temperature scales
SELECT CONVERT(32, 'F', 'C') as freezing FROM DUAL;            -- 0°C
SELECT CONVERT(100, 'C', 'F') as boiling FROM DUAL;            -- 212°F
SELECT CONVERT(20, 'C', 'K') as room_temp FROM DUAL;           -- 293.15 K
```

#### **Volume Conversions**
```sql
-- Cooking and fuel
SELECT CONVERT(1, 'cup', 'ml') as volume FROM DUAL;            -- 236.59 ml
SELECT CONVERT(3.785, 'L', 'gal') as fuel FROM DUAL;           -- 1 gallon
SELECT CONVERT(750, 'ml', 'fl_oz') as wine FROM DUAL;          -- 25.36 fl oz
```

#### **Time Conversions**
```sql
SELECT CONVERT(1.5, 'hours', 'minutes') as duration FROM DUAL;  -- 90 minutes
SELECT CONVERT(365, 'days', 'years') as age FROM DUAL;         -- 1 year
SELECT CONVERT(5000, 'ms', 'seconds') as delay FROM DUAL;      -- 5 seconds
```

#### **Other Categories**
```sql
-- Area
SELECT CONVERT(100, 'sq_ft', 'm2') as area FROM DUAL;          -- 9.29 m²
SELECT CONVERT(5, 'acres', 'hectares') as land FROM DUAL;      -- 2.02 hectares

-- Speed
SELECT CONVERT(65, 'mph', 'kph') as speed FROM DUAL;           -- 104.61 km/h
SELECT CONVERT(100, 'knots', 'mph') as wind FROM DUAL;         -- 115.08 mph

-- Pressure
SELECT CONVERT(14.7, 'psi', 'bar') as pressure FROM DUAL;      -- 1.01 bar
SELECT CONVERT(1, 'atm', 'Pa') as standard FROM DUAL;          -- 101325 Pa
```

### Complex Calculations with Conversions

```sql
-- Calculate BMI converting from imperial to metric
SELECT 
    CONVERT(180, 'lb', 'kg') as weight_kg,
    CONVERT(72, 'inches', 'm') as height_m,
    CONVERT(180, 'lb', 'kg') / 
    (CONVERT(72, 'inches', 'm') * CONVERT(72, 'inches', 'm')) as BMI
FROM DUAL;

-- Fuel efficiency conversion (mpg to L/100km)
SELECT 
    (CONVERT(100, 'km', 'miles') / 30.0) * CONVERT(1, 'gal', 'L') 
    as liters_per_100km
FROM DUAL;  -- 30 mpg = 7.84 L/100km

-- Physics calculations with proper units
SELECT 
    0.5 * CONVERT(2000, 'lb', 'kg') * 
    POWER(CONVERT(60, 'mph', 'm/s'), 2) as kinetic_energy_joules
FROM DUAL;
```

### Features
- **Case-insensitive**: `'KM'`, `'km'`, `'Km'` all work
- **Unit aliases**: `'kilometer'`, `'kilometers'`, `'km'` are equivalent
- **High precision**: Maintains floating-point precision throughout conversions
- **Bidirectional**: All conversions work in both directions
- **Error handling**: Clear messages for incompatible unit types

### Complete Unit Reference

**Length**: m, meter, km, kilometer, cm, mm, nm, um, mile, yard, foot/feet, inch, nautical_mile

**Mass**: kg, kilogram, g, gram, mg, ug, tonne, metric_ton, lb, pound, oz, ounce, ton, stone

**Temperature**: C, celsius, F, fahrenheit, K, kelvin

**Volume**: L, liter, ml, m3, cm3, cc, gal, gallon, qt, quart, pt, pint, cup, fl_oz, tbsp, tsp

**Time**: s, second, ms, us, ns, minute, hour, day, week, month, year

**Area**: m2, km2, cm2, sq_ft, sq_in, sq_mi, acre, hectare

**Speed**: m/s, kph, mph, knot, fps

**Pressure**: Pa, kPa, MPa, GPa, bar, mbar, atm, psi, torr, mmHg

## 🌌 Astronomical Constants & Calculations

SQL CLI includes comprehensive astronomical constants for solar system calculations and astrophysics:

### **Solar System Constants**
```sql
-- Calculate Earth's surface gravity (should be ~9.82 m/s²)
SELECT G() * MASS_EARTH() / POWER(6.371e6, 2) as earth_gravity FROM DUAL;

-- Compare planetary masses
SELECT 
    MASS_JUPITER() / MASS_EARTH() as jupiter_earth_ratio,  -- ~318x
    MASS_EARTH() / MASS_MOON() as earth_moon_ratio        -- ~81x
FROM DUAL;

-- Orbital distances in AU (Astronomical Units)
SELECT 
    DIST_MARS() / AU() as mars_au,        -- ~1.52 AU
    DIST_JUPITER() / AU() as jupiter_au,  -- ~5.2 AU
    DIST_NEPTUNE() / AU() as neptune_au   -- ~30.1 AU
FROM DUAL;
```

### **Astrophysics Calculations**
```sql
-- Escape velocity from celestial bodies
SELECT 
    SQRT(2 * G() * MASS_EARTH() / 6.371e6) as earth_escape_ms,  -- ~11,200 m/s
    SQRT(2 * G() * MASS_MOON() / 1.737e6) as moon_escape_ms     -- ~2,380 m/s
FROM DUAL;

-- Schwarzschild radius (black hole event horizon)
SELECT 
    2 * G() * MASS_SUN() / (C() * C()) as sun_schwarzschild_m  -- ~2,954 m
FROM DUAL;

-- Kepler's Third Law: Calculate orbital period
SELECT 
    SQRT(4 * PI() * PI() * POWER(DIST_EARTH(), 3) / (G() * MASS_SUN())) 
    / (365.25 * 24 * 3600) as earth_period_years  -- Should be ~1.0
FROM DUAL;
```

### **Combined with Unit Conversions**
```sql
-- Convert astronomical distances to human-scale units
SELECT 
    CONVERT(DIST_EARTH(), 'm', 'miles') as earth_orbit_miles,  -- ~93 million
    CONVERT(LIGHTYEAR(), 'm', 'km') as lightyear_km,          -- ~9.46 trillion
    CONVERT(PARSEC(), 'm', 'lightyear') as parsec_in_ly       -- ~3.26
FROM DUAL;

-- Calculate with mixed units
SELECT 
    G() * MASS_EARTH() / POWER(CONVERT(6371, 'km', 'm'), 2) as g_from_km
FROM DUAL;
```

### **Available Astronomical Constants**

**Particle Radii**:
- `RE()` - Classical electron radius (2.82×10⁻¹⁵ m)
- `RP()` - Proton radius (8.41×10⁻¹⁶ m)
- `RN()` - Neutron radius (8.4×10⁻¹⁶ m)

**Solar System Masses** (kg):
- `MASS_SUN()` - 1.989×10³⁰
- `MASS_EARTH()` - 5.972×10²⁴
- `MASS_MOON()` - 7.342×10²²
- `MASS_MERCURY()`, `MASS_VENUS()`, `MASS_MARS()`, `MASS_JUPITER()`, `MASS_SATURN()`, `MASS_URANUS()`, `MASS_NEPTUNE()`

**Solar System Radii** (meters):
- `RADIUS_SUN()` - 6.96×10⁸
- `RADIUS_EARTH()` - 6.371×10⁶
- `RADIUS_MOON()` - 1.737×10⁶
- `RADIUS_MERCURY()`, `RADIUS_VENUS()`, `RADIUS_MARS()`, `RADIUS_JUPITER()`, `RADIUS_SATURN()`, `RADIUS_URANUS()`, `RADIUS_NEPTUNE()`

**Orbital Distances** (meters from Sun):
- `DIST_MERCURY()` through `DIST_NEPTUNE()`
- `AU()` - Astronomical Unit (1.496×10¹¹ m)

**Distance Units**:
- `PARSEC()` - 3.086×10¹⁶ m
- `LIGHTYEAR()` - 9.461×10¹⁵ m

## 🧪 Chemistry Functions

SQL CLI provides essential chemistry functions for working with chemical data and molecular calculations:

### **Molecular Formula Support**
```sql
-- Direct molecular formula calculations
SELECT 
    ATOMIC_MASS('H2O') as water,                    -- 18.016
    ATOMIC_MASS('CO2') as carbon_dioxide,           -- 44.01
    ATOMIC_MASS('C6H12O6') as glucose,              -- 180.156
    ATOMIC_MASS('Ca(OH)2') as calcium_hydroxide     -- 74.096
FROM DUAL;

-- Use common compound aliases
SELECT 
    ATOMIC_MASS('water') as h2o,                    -- 18.016 (alias for H2O)
    ATOMIC_MASS('glucose') as sugar,                -- 180.156 (alias for C6H12O6)
    ATOMIC_MASS('salt') as nacl,                    -- 58.44 (alias for NaCl)
    ATOMIC_MASS('ammonia') as nh3                   -- 17.034 (alias for NH3)
FROM DUAL;

-- Complex organic molecules
SELECT 
    ATOMIC_MASS('C2H5OH') as ethanol,               -- 46.068
    ATOMIC_MASS('CH3COOH') as acetic_acid,          -- 60.052
    ATOMIC_MASS('C12H22O11') as sucrose             -- 342.296
FROM DUAL;
```

### **Chemical Constants & Properties**
```sql
-- Calculate moles from particle count
SELECT 
    6.022e23 / AVOGADRO() as moles_from_particles,  -- ~1 mol
    12 * AVOGADRO() as carbon_atoms_in_dozen_moles   -- ~7.23×10²⁴
FROM DUAL;

-- Single element properties
SELECT 
    ATOMIC_MASS('Carbon') as carbon_mass,       -- 12.011
    ATOMIC_MASS('H') as hydrogen_mass,          -- 1.008  
    ATOMIC_NUMBER('Gold') as gold_number        -- 79
FROM DUAL;
```

### **Available Chemistry Functions**

**Universal Constants**:
- `AVOGADRO()` - Avogadro's number (6.022×10²³ mol⁻¹)

**Molecular Mass Calculation**:
- `ATOMIC_MASS(formula)` - Returns atomic or molecular mass in g/mol
  - **Single elements**: 'H', 'Carbon', 'Au', etc.
  - **Molecular formulas**: 'H2O', 'CO2', 'Ca(OH)2', 'C6H12O6'
  - **Common aliases**: 'water', 'glucose', 'salt', 'ammonia'
  - **Complex organics**: 'CH3COOH', 'C2H5OH', 'C12H22O11'
  - Supports parentheses for compound groups: 'Mg(NO3)2'
  - Case-insensitive for elements and aliases
  
- `ATOMIC_NUMBER(element)` - Returns atomic number (proton count)
  - Accepts element symbols and names
  - Single elements only (not molecular formulas)

**Supported Elements**:
Currently supports the first 20 elements plus common metals (Fe, Cu, Zn, Ag, Au, Hg, Pb, U).

**Compound Aliases**:
- Water compounds: 'water' (H2O)
- Organic compounds: 'glucose' (C6H12O6), 'sucrose' (C12H22O11), 'ethanol' (C2H5OH)
- Common chemicals: 'salt' (NaCl), 'ammonia' (NH3), 'baking soda' (NaHCO3)
- Acids: 'sulfuric acid' (H2SO4), 'hydrochloric acid' (HCl), 'nitric acid' (HNO3)

## ⚠️ SQL Features Not Yet Supported

While SQL CLI provides extensive SQL functionality, some standard SQL features are not yet implemented:

### **Not Yet Supported**
- `STDDEV()`, `VARIANCE()` - Statistical functions
- `HAVING` clause - Filtering groups after GROUP BY

### **🔗 Joins & Subqueries**

#### **JOIN Operations**
```sql
-- Inner JOIN - only matching records
SELECT
    orders.id,
    orders.amount,
    customers.name,
    customers.email
FROM orders
JOIN customers ON orders.customer_id = customers.id
WHERE orders.amount > 100;

-- LEFT JOIN - all records from left table
SELECT
    employees.name,
    employees.department,
    projects.project_name,
    projects.deadline
FROM employees
LEFT JOIN projects ON employees.id = projects.assigned_to
ORDER BY employees.name;

-- CROSS JOIN - Cartesian product (every row with every row)
-- Perfect for stress testing, scenario analysis, parameter sweeps
WITH trades AS (
  SELECT 'AAPL' as symbol, 100 as quantity, 150.0 as price
  UNION ALL SELECT 'MSFT', 200, 300.0
),
risk_scenarios AS (
  SELECT 'Base' as scenario, 1.0 as shock
  UNION ALL SELECT 'Stressed', 0.9
)
SELECT symbol, quantity, price, scenario, price * shock as stressed_price
FROM trades CROSS JOIN risk_scenarios;

-- Multiple JOINs with qualified column names
SELECT
    orders.id,
    customers.name as customer_name,
    products.name as product_name,
    products.price * order_items.quantity as total
FROM orders
JOIN customers ON orders.customer_id = customers.id
JOIN order_items ON orders.id = order_items.order_id
JOIN products ON order_items.product_id = products.id
WHERE orders.order_date > '2024-01-01'
ORDER BY total DESC;
```

**JOIN Features & Limitations:**
- **Supported**: `INNER JOIN`, `LEFT JOIN`, `RIGHT JOIN`
- **Qualified Columns**: Use `table.column` syntax to avoid ambiguity
- **Complex Conditions**: Multiple JOIN conditions with AND/OR
- **⚠️ Limitation**: Table aliases not supported (use full table names)
- **⚠️ Limitation**: FULL OUTER JOIN not yet implemented

#### **Subqueries & CTEs**
```sql
-- Scalar subquery in SELECT
SELECT
    name,
    salary,
    (SELECT AVG(salary) FROM employees) as avg_salary,
    salary - (SELECT AVG(salary) FROM employees) as salary_diff
FROM employees
WHERE department = 'Engineering';

-- Subquery with IN operator
SELECT * FROM products
WHERE category_id IN (
    SELECT id FROM categories
    WHERE name.Contains('Electronics')
);

-- Correlated subquery
SELECT
    customer_id,
    order_date,
    amount
FROM orders o1
WHERE amount > (
    SELECT AVG(amount)
    FROM orders o2
    WHERE o2.customer_id = o1.customer_id
);
```

- **Set Operations**: `UNION`, `INTERSECT`, `EXCEPT` - Combine query results
- **Subquery Types**: Scalar, IN/EXISTS, correlated subqueries supported
- **Common Table Expressions (CTEs)**: Complex multi-stage queries with labeled results

### **Data Modification**
- `INSERT`, `UPDATE`, `DELETE` - Data modification
- `CREATE TABLE`, `ALTER TABLE` - DDL operations

### **Other Features**
- `DISTINCT` keyword - Unique values only
- Window functions (`ROW_NUMBER()`, `RANK()`, etc.)
- `EXISTS`, `ALL`, `ANY` operators

**Note**: SQL CLI is designed for read-only data analysis and exploration. For full SQL database functionality, consider using a traditional database system.

## 🔧 Development

### Running Tests
```bash
# Run all tests
cargo test

# Run specific test suite
cargo test --test data_view_trades_test
```

### Build Commands
```bash
# Format code (required before commits)
cargo fmt

# Build release
cargo build --release

# Run with file
cargo run data.csv
```

## 🎯 Performance

- **10K-100K rows**: Interactive queries (50-200ms)
- **Complex queries on 100K rows**: ~100-200ms  
- **Memory usage**: ~50MB for 100K rows
- **Navigation**: Zero-latency keyboard response

## 📚 Documentation

Comprehensive documentation available in the `docs/` folder covering:
- Architecture and design decisions
- SQL parser implementation
- TUI component system
- Performance optimization techniques

## ⚡ Performance

SQL CLI delivers exceptional performance with intelligent scaling characteristics:

### Performance at 25,000 rows (typical dataset)
| Operation | Time | Complexity |
|-----------|------|------------|
| LIKE pattern matching | **7-14ms** | O(log n) - logarithmic |
| Simple SELECT with LIMIT | **2-3ms** | O(1) - constant |
| WHERE numeric comparison | **5ms** | O(1) - constant |
| WHERE string equality | **53ms** | O(n) - linear |
| ORDER BY with LIMIT | **4-6ms** | O(1) - constant |
| LAG/LEAD window functions | **315ms** | O(n) - linear |
| GROUP BY (50 categories) | **1.3s** | O(n) - linear |
| Multi-column GROUP BY | **3.1s** | O(n) - linear |

### Why SQL CLI is Fast
- **Regex caching**: LIKE patterns compiled once, reused for massive gains
- **FxHashMap**: 2-3x faster than standard HashMap for aggregations
- **Smart memory allocation**: Cardinality estimation prevents rehashing
- **Streaming operations**: Minimal memory overhead on large files

### Scaling Characteristics
Most operations scale linearly or better:
- **O(1) constant**: SELECT/ORDER BY with LIMIT
- **O(log n) logarithmic**: LIKE pattern matching (cached regex)
- **O(n) linear**: GROUP BY, window functions, WHERE clauses

See [Performance Benchmarks](docs/PERFORMANCE_BENCHMARKS.md) for detailed metrics and optimization roadmap.

## 🤝 Contributing

1. Fork the repository
2. Create a feature branch
3. Run `cargo fmt` before committing (required)
4. Submit a pull request

## 📄 License

[MIT License](LICENSE) - see the LICENSE file for details.

---

**Built with Rust 🦀 | Powered by ratatui + crossterm | Inspired by vim**