spyglass 1.1.0

Search engine for documents, inspired by bioinformatics
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
use std::cmp;
use std::cmp::Ordering;
use std::fs;
use std::io;
use std::io::{Error,ErrorKind};
use std::collections::HashMap;
use std::str::Chars;

use deunicode;
use log::{info,warn,debug,error};
use serde::{Serialize,Deserialize};

#[cfg(test)]
mod tests {
    use super::*;

    use std::collections::HashSet;
    use utilities;

    #[test]
    fn test_build_size() {
        utilities::init_testing();
        let mut trie = SuffixTrie::empty();
        trie.add_sentences_from_text("test", "ABCDE.<<STOP>>ABCDE.<<STOP>>ABCDE.");
        println!("Result is {:#?}", trie);
        assert_eq!(trie.len(), 7);
        trie.add_sentences_from_text("duplicate", "ABCDE.<<STOP>>ABCDE.<<STOP>>ABCDE.");
        println!("Result is {:#?}", trie);
        assert_eq!(trie.len(), 7);

        let trie = SuffixTrie::new("abcabdabe");
        println!("Result is {:#?}", trie);
        assert_eq!(trie.len(), 12);
    }

    #[test]
    fn test_build_leaves() {
        utilities::init_testing();
        helper_test_leaves("abcdefghijk");
        helper_test_leaves("ababacababccbabcbabccbabcbababcbcbabcbbacbcbabcab");
    }

    fn helper_test_leaves(string: &str) {
        let trie = SuffixTrie::new(string);
        println!("Result is {:#?}", trie);

        let expected: HashSet<usize> = (0..string.len()).collect();
        // Gather together all leaf children from the SuffixTrie
        let mut actual: HashSet<usize> = HashSet::new();
        for node in trie.node_storage.iter() {
            for leaf_child in node.leaf_children.iter() {
                // Insert node to list, and assert that it wasn't already present
                assert!(actual.insert(leaf_child.index_in_str));
            }
        }
        // Check for equality
        assert!(actual.is_superset(&expected));
        assert!(expected.is_superset(&actual));
    }

    #[test]
    fn line_number_calculation() {
        utilities::init_testing();
        let text = Text {
            line_start_indices: vec![0, 10, 20, 30, 40, 50, 60, 70],
            ..Text::new("noname", 0)
        };
        for index in 0..9 {
            for line in 0..7 {
                assert_eq!(text.get_line_of_character(index + line*10), line);
            }
            for line in 8..10 {
                assert_eq!(text.get_line_of_character(index + line*10), 7);
            }
        }
        assert_eq!(text.get_line_of_character(0), 0);
        assert_eq!(text.get_line_of_character(1), 0);
        assert_eq!(text.get_line_of_character(2), 0);
        assert_eq!(text.get_line_of_character(9), 0);
        assert_eq!(text.get_line_of_character(10), 1);
        assert_eq!(text.get_line_of_character(29), 2);
        assert_eq!(text.get_line_of_character(30), 3);
        assert_eq!(text.get_line_of_character(31), 3);
        assert_eq!(text.get_line_of_character(139), 7);
    }

}

const SINGLE_WILDCARD: char = '?';

#[derive(Clone,Debug,Eq,Serialize,Deserialize)]
pub struct Match {
    pub text_index: usize,
    pub index_in_str: usize,
    pub start_line: usize,
    pub end_line: usize,
    pub length: usize,
    pub errors: usize,
}

impl Ord for Match {
    fn cmp(&self, other: &Self) -> Ordering {
        self.sort_key().cmp(&(other.sort_key()))
    }
}

impl PartialOrd for Match {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for Match {
    fn eq(&self, other: &Self) -> bool {
        self.sort_key() == other.sort_key()
    }
}

impl Match {
    fn sort_key(&self) -> (usize, usize, usize, usize) {
        // Prefer matches which have fewer errors, are shorter, in earlier
        // texts and earlier within the text in which they appear
        (self.errors, self.length, self.text_index, self.index_in_str)
    }
}

#[derive(Clone,Copy,Debug,Eq,Serialize,Deserialize)]
struct Leaf {
    index_in_str: usize,
    text_index: usize,
}

impl Ord for Leaf {
    fn cmp(&self, other: &Self) -> Ordering {
        (self.text_index, self.index_in_str).cmp(&(other.text_index, other.index_in_str))
    }
}

impl PartialOrd for Leaf {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for Leaf {
    fn eq(&self, other: &Self) -> bool {
        (self.text_index, self.index_in_str) == (other.text_index, other.index_in_str)
    }
}

impl Leaf {
    fn new(index_in_str: usize, text_index: usize) -> Self {
        Leaf {
            index_in_str,
            text_index,
        }
    }
}

#[derive(Debug,Serialize,Deserialize)]
struct Text {
    name: String,
    // Indices of the starts of lines
    line_start_indices: Vec<usize>,
    last_index: usize,
    offset: usize,
}

impl Text {
    fn new(name: &str, offset: usize) -> Self {
        Text {
            name: name.to_string(),
            line_start_indices: vec![0],
            last_index: 0,
            offset,
        }
    }

    fn char_before_line(&self, char_index: usize, line_index: usize) -> bool {
        let is_before_line;
        if line_index == self.line_start_indices.len() {
            // This is an invalid line index (too high) so the character
            // must come on a line before this one
            is_before_line = true;
        } else if char_index < self.line_start_indices[line_index] {
            // The character index is before the index of the start of this
            // line, so the character comes before the line
            is_before_line = true;
        } else {
            // Character index after the index of start of line, so character
            // is on this line or afterwards
            is_before_line = false;
        }
        is_before_line
    }

    fn get_line_of_character(&self, char_index: usize) -> usize {
        // Find the last line_index smaller than char_index
        let mut found = false;
        let last_line = self.line_start_indices.len();
        let mut lower_line_limit = 0;
        let mut upper_line_limit = match last_line {
            0 => 0,
            ll => ll - 1,
        };
        debug!("Finding index of line containing char index {}", char_index);
        debug!("Line start indices are {:?}", self.line_start_indices);
        let mut current_line: usize = (upper_line_limit - lower_line_limit)/2;
        while !found && lower_line_limit != upper_line_limit {
            debug!("Upper: {}, Lower: {}, Current: {}", upper_line_limit, lower_line_limit, current_line);
            assert!(lower_line_limit <= current_line);
            assert!(upper_line_limit >= current_line);
            if self.char_before_line(char_index, current_line) {
                // The character must be on an earlier line
                upper_line_limit = cmp::max(current_line - 1, 0);
            } else {
                // The character is on this line or later
                if self.char_before_line(char_index, current_line + 1) {
                    // It must be on the current line, since it can't be later
                    // (it's before the next line)
                    found = true;
                    debug!("Found matching line: {}", current_line);
                } else {
                    // The character is on a later line
                    lower_line_limit = cmp::min(current_line + 1, last_line);
                }

            }
            current_line = lower_line_limit + (upper_line_limit - lower_line_limit)/2;
        }
        current_line
    }

    /// Find the index of the line where this substring starts and the index
    /// of the line where it ends
    fn get_lines_of_substring(&self, start_index: usize, length: usize) -> (usize, usize) {
        let start_line = self.get_line_of_character(start_index);
        let end_line = self.get_line_of_character(start_index + length);

        (start_line, end_line)
    }
}

enum EdgeMatchKind {
    WholeMatch,
    EarlyStop,
    Diverge(char),
}

struct EdgeMatch {
    overlap_type: EdgeMatchKind,
    shared_length: usize,
}

#[derive(Clone,Copy,Debug,Eq,Hash)]
struct CharLocation {
    node_index: usize,
    index_in_edge: usize,
}

impl Ord for CharLocation {
    fn cmp(&self, other: &Self) -> Ordering {
        self.sort_key().cmp(&(other.sort_key()))
    }
}

impl PartialOrd for CharLocation {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for CharLocation {
    fn eq(&self, other: &Self) -> bool {
        self.sort_key() == other.sort_key()
    }
}

impl CharLocation {
    fn sort_key(&self) -> (usize, usize) {
        // Prefer matches which have fewer errors, are shorter, in earlier
        // texts and earlier within the text in which they appear
        (self.node_index, self.index_in_edge)
    }
}

#[derive(Clone,Copy,Debug)]
struct WorkingMatch {
    starting_char: CharLocation,
    errors: usize,
    length: usize,
}

#[derive(Debug,Serialize,Deserialize)]
pub struct SuffixTrie {
    // Place to store entire string - keeps ownership simple
    str_storage: Vec<char>,
    // Place to store all the nodes
    node_storage: Vec<SubTrie>,
    // Information about each of the texts (e.g. files) included in
    // the Suffix Trie
    texts: Vec<Text>,
}

#[derive(Debug,Serialize,Deserialize)]
struct SubTrie {
    // Index of this node in the overall array
    node_index: usize,
    // List of children node indices, indexed by the string labelling the edge
    // from the parent to the child. The key is the first character of the edge.
    children: HashMap<char, usize>,
    // List of indices at which this suffix is present
    leaf_children: Vec<Leaf>,
    // Index where the string labelling the edge from this node's parent starts
    // and the length of this edge.
    edge_start_index: usize,
    edge_length: usize,
}

impl WorkingMatch {
    fn new(starting_char: CharLocation, errors: usize, length: usize) -> Self {
        WorkingMatch {
            starting_char,
            errors,
            length,
        }
    }
}

impl SuffixTrie {
    /// New suffix trie containing suffixes of a single string
    pub fn new(string: &str) -> Self {
        let mut suffix_trie = SuffixTrie::empty();
        suffix_trie.texts.push(Text::new("first text", 0));
        suffix_trie.add_string_suffixes(string, 0, 0);
        suffix_trie
    }

    /// New empty suffix trie
    pub fn empty() -> Self {
        let root_node = SubTrie::empty(0, 0, 0);
        let suffix_trie = SuffixTrie {
            str_storage: vec![],
            node_storage: vec![root_node],
            texts: vec![],
        };
        suffix_trie
    }

    /// New suffix trie containing the suffixes of each sentence from
    /// the given file
    pub fn from_file(path: &str) -> Result<SuffixTrie, io::Error> {
        let mut suffix_trie = SuffixTrie::empty();
        suffix_trie.add_file(path)?;
        Ok(suffix_trie)
    }

    pub fn add_file(&mut self, path: &str) -> Result<(), io::Error> {
        let contents = fs::read_to_string(path)?;
        self.add_sentences_from_text(path, &contents);
        Ok(())
    }


    pub fn add_sentences_from_text(&mut self, text_name: &str, contents: &str) {
        let sentences: Vec<&str> = contents.split("<<STOP>>").collect();

        let offset = self.str_storage.len();
        self.texts.push(Text::new(text_name, offset));
        let text_index = self.texts.len() - 1;

        let mut sentence_start = 0;
        for sentence in sentences {
            let num_chars = self.add_string_suffixes(sentence, sentence_start, text_index);
            sentence_start += num_chars;
        }
    }

    /// New suffix trie containing the suffixes of each sentence from
    /// each file in the given directory
    pub fn from_directory(path: &str) -> Result<SuffixTrie, io::Error> {
        let mut suffix_trie = SuffixTrie::empty();

        let files = fs::read_dir(path)?;
        let mut paths: Vec<String> = vec![];

        for file in files {
            info!("Attempting to read file {:?}", file);
            let file = file?;
            let path = file.path();
            match path.to_str() {
                Some(path_str) => paths.push(path_str.to_string()),
                None => return Err(Error::new(ErrorKind::InvalidInput,
                                              "Failed to convert path to string")),
            }
        }
        paths.sort();

        for path in paths {
            suffix_trie.add_file(&path)?
        }

        Ok(suffix_trie)
    }

    /// Add the suffixes of a string to the suffix trie
    fn add_string_suffixes(&mut self,
                           string: &str,
                           start_index: usize,
                           text_index: usize) -> usize{
        let mut num_chars = 0;
        let ascii_string = deunicode::deunicode(string);
        self.str_storage.extend(ascii_string.chars());

        for (index, c) in ascii_string.char_indices() {
            num_chars += 1;
            if c == '\n' {
                self.texts[text_index].line_start_indices.push(index + start_index + 1);
                debug!("Adding line to line_start_indices {:?}", self.texts[text_index].line_start_indices);
            }

            let suffix = &ascii_string[index..];
            let total_index = start_index + index;
            self.add_suffix(suffix, total_index, text_index);
        }
        self.texts[text_index].last_index += num_chars;
        num_chars
    }

    fn add_suffix(&mut self,
                  string: &str,
                  index_in_text: usize,
                  text_index: usize) {
        let mut parent_index = 0;
        let mut child_index = 0;
        let mut string_iterator = string.chars();
        let mut current_char_index = index_in_text + self.texts[text_index].offset;
        debug!("Adding suffix {} to tree {:#?}", string, self);
        while let Some(c) = &string_iterator.next() {
            // Check if there is an edge starting with this char in the parent
            let parent: &SubTrie = self.get_node(parent_index);
            debug!("Looking to add character {} to trie. Parent is {}", *c, parent_index);
            if let Some(ancestor_index) = parent.get_child_index(*c) {
                // There is an existing node starting with this character
                debug!("Found existing parent {}. Will add this suffix below this node.", ancestor_index);
                let (cci, ci) = self.insert_within_edge(*ancestor_index,
                                                        &mut string_iterator,
                                                        current_char_index);
                current_char_index = cci;
                child_index = ci;
            } else {
                // There is no edge, simply add a edge from this parent
                // labelled with the rest of the string
                debug!("No existing parent");
                child_index = self.add_node(parent_index,
                                            *c,
                                            current_char_index,
                                            &string_iterator.count() + 1);
                break;
            }
            parent_index = child_index;
        }

        debug!("Adding leaf for index_in_text {} to node {}", index_in_text, child_index);
        let final_node: &mut SubTrie = self.get_node_mut(child_index);
        final_node.add_leaf_child(Leaf::new(index_in_text, text_index));
    }

    /// Split the edge from the given node into two, the first part having length
    /// first_length.
    ///
    /// Currently:  L
    /// grandparent -> parent (-> children)
    ///
    /// Want:       X         Y
    /// grandparent -> parent -> new (-> children)
    /// I.e. the edge from grandparent to parent is now split into two, with
    /// edge lengths X and Y, so that X+Y=L (original length) and X=first_length.
    fn split_edge(&mut self, node_index: usize, first_length: usize) {
        debug!("Splitting edge of {}. Edge to this node will have length {}", node_index, first_length);
        let mut parent = self.get_node_mut(node_index);
        let new_edge_start_index = parent.edge_start_index + first_length;
        let new_edge_length = parent.edge_length - first_length;
        // We are splitting the edge into two new edges, so the new
        // length must be shorter
        assert!(parent.edge_length > first_length);

        parent.edge_length = first_length;
        // Extract existing children from this parent, we will add them to
        // the new node.
        let children: HashMap<char, usize> = parent.children.drain().collect();
        let leaf_children: Vec<Leaf> = parent.leaf_children.drain(..).collect();

        let edge = self.str_storage[new_edge_start_index].clone();
        let new_node_index = self.add_node(node_index,
                                           edge,
                                           new_edge_start_index,
                                           new_edge_length);
        let new_node = self.get_node_mut(new_node_index);
        new_node.children = children;
        new_node.leaf_children = leaf_children;
    }


    fn add_node(&mut self,
                parent_index: usize,
                edge: char,
                char_index: usize,
                edge_length: usize) -> usize {
        let child_index = self.node_storage.len();
        debug!("Adding node {} to parent {} with edge {}, edge_start_index {} and edge_length {}",
               child_index, parent_index, edge, char_index, edge_length);

        // Create empty child node
        self.node_storage.push(SubTrie::empty(child_index,
                                              char_index,
                                              edge_length));

        // Edge should match the value at the given index in the string
        assert_eq!(edge, self.str_storage[char_index]);

        // Add child index to parent's list of children
        self._unsafe_add_child_to_parent(edge,
                                         parent_index,
                                         child_index);

        // Shouldn't be called if the edge already exists
        // Return index of child node
        child_index
    }

    fn consume_all_shared_length(&self,
                                 parent_index: usize,
                                 string_iterator: &mut Chars) -> EdgeMatch {
        let ancestor = self.get_node(parent_index);
        let ancestor_start = ancestor.edge_start_index;
        let ancestor_length = ancestor.edge_length;

        let mut edge_match = EdgeMatch {
            overlap_type: EdgeMatchKind::WholeMatch,
            shared_length: ancestor_length,
        };

        // Run through character by character until we find the place
        // where these strings diverge
        // Start at the second character of the existing edge, and the next
        // character of our edge
        let mut index_in_edge = 1;
        let mut edges_agree = true;
        while index_in_edge < ancestor_length && edges_agree {
            // Get next character of our string and compare to next
            // character of existing edge
            if let Some(c) = string_iterator.next() {
                let index = ancestor_start + index_in_edge;
                let ancestor_c = self.str_storage[index];
                debug!("Next character of suffix is {}, next ancestor character is {}", c, ancestor_c);

                if c != ancestor_c {
                    edge_match = EdgeMatch {
                        overlap_type: EdgeMatchKind::Diverge(c),
                        shared_length: index_in_edge,
                    };
                    edges_agree = false
                }
            } else {
                edge_match = EdgeMatch {
                    overlap_type: EdgeMatchKind::EarlyStop,
                    shared_length: index_in_edge,
                };
                edges_agree = false;
            }
            index_in_edge += 1;
        }

        edge_match
    }

    fn insert_within_edge(&mut self,
                          parent_index: usize,
                          string_iterator: &mut Chars,
                          start_index: usize) -> (usize, usize) {
        let edge_match = self.consume_all_shared_length(parent_index,
                                                        string_iterator);

        debug!("Shared length with ancestor edge was {}", edge_match.shared_length);

        let child_index = match edge_match.overlap_type {
            EdgeMatchKind::WholeMatch =>  {
                debug!("Entire ancestor edge matched with our string. No changes to this ancestor needed. Any remaining characters will be added below this node.");
                parent_index
            },
            EdgeMatchKind::Diverge(last_char) => {
                debug!("Ancestor edge and our string diverge. Splitting ancestor edge here to add node for rest of suffix here");
                self.split_edge(parent_index,
                                edge_match.shared_length);
                self.add_node(parent_index,
                              last_char,
                              start_index + edge_match.shared_length,
                              string_iterator.count() + 1)
            },
            EdgeMatchKind::EarlyStop => {
                debug!("More characters in ancestor edge than our string. Splitting edge to add leaf in middle of ancestor edge.");
                self.split_edge(parent_index,
                                edge_match.shared_length);
                parent_index
            },
        };

        (start_index + edge_match.shared_length, child_index)
    }

    fn get_node(&self, node_index: usize) -> &SubTrie {
        let node = self.node_storage.get(node_index);
        match node {
            Some(n) =>  n,
            None => {
                panic!("Index out of bounds: {} size is {}", node_index, self.node_storage.len());
            }
        }
    }

    fn get_node_mut(&mut self, node_index: usize) -> &mut SubTrie {
        self.node_storage.get_mut(node_index).expect("Node not found!")
    }

    pub fn find_edit_distance(&self, pattern: &str, max_errors: usize) -> Vec<Match> {
        self.find_edit_distance_ignore(pattern, max_errors, HashMap::new(), false)
    }

    pub fn find_edit_distance_ignore(&self,
                                     pattern: &str,
                                     max_errors: usize,
                                     ignored_characters: HashMap<char, bool>,
                                     case_insensitive: bool)
        -> Vec<Match> {
            let config = MatcherConfig {
                max_errors,
                ignored_characters,
                case_insensitive,
            };
            let mut matcher = SuffixTrieEditMatcher::new(config);
            matcher.find_edit_distance_ignore(&self, pattern)
        }

    /// Find all exact matches of the given pattern
    pub fn find_exact(&self, pattern: &str, case_insensitive: bool) -> Vec<Match> {
        let empty_config = MatcherConfig {
            case_insensitive,
            ..MatcherConfig::exact()
        };
        let mut matcher = SuffixTrieEditMatcher::new(empty_config);
        matcher.find_edit_distance_ignore(&self, pattern)
    }

    fn len(&self) -> usize {
        self.node_storage.len()
    }

    fn get_all_leaf_descendants(&self, node_index: usize) -> Vec<Leaf> {
        let mut leaves = Vec::new();
        let mut to_process: Vec<usize> = vec![node_index];
        while let Some(index) = to_process.pop() {
            let node = self.get_node(index);
            leaves.extend(&node.leaf_children);
            let children: Vec<usize> = node.children.values().cloned().collect();
            to_process.extend(&children);
        }
        leaves.sort();
        leaves.clone()
    }

    fn match_array_from_leaves(&self,
                               leaves: Vec<Leaf>,
                               length: usize,
                               errors: usize) -> Vec<Match> {
        let mut matches = vec![];

        for leaf in leaves.iter() {
            let text = &self.texts[leaf.text_index];
            let (start_line, end_line) = text.get_lines_of_substring(leaf.index_in_str,
                                                                     length);
            let match_obj = Match {
                text_index: leaf.text_index,
                index_in_str: leaf.index_in_str,
                start_line,
                end_line,
                length,
                errors,
            };
            matches.push(match_obj);
        }

        matches
    }

    fn owned_lines_after(&self,
                         text: &Text,
                         line_index: usize,
                         lines_after: usize,
                         start_char_index: usize) -> String {
        let end_line = line_index + lines_after;
        let end_char_index = if end_line + 2 >= text.line_start_indices.len() {
            // This is either beyond the end of the text, or is the very last
            // line. We must return the end of the text
            text.last_index
        } else {
            text.line_start_indices[end_line + 1]
        };
        let length = end_char_index - start_char_index;
        self.owned_from_index(text, start_char_index, length)
    }

    fn owned_lines_before(&self,
                          text: &Text,
                          line_index: usize,
                          lines_before: usize,
                          end_char_index: usize) -> String {
        let start_char_index = if lines_before > line_index {
            0
        } else {
            let start_line = line_index - lines_before;
            text.line_start_indices[start_line]
        };
        let length = end_char_index - start_char_index;
        self.owned_from_index(text, start_char_index, length)
    }

    fn owned_from_index(&self,
                        text: &Text,
                        index_in_str: usize,
                        length: usize) -> String {
        let start = index_in_str + text.offset;
        let end = start + length;
        (self.str_storage[start .. end]).iter().cloned().collect::<String>()
    }

    pub fn get_strings_of_match(&self,
                                match_obj: &Match,
                                context_lines: usize) -> (String, String, String) {
        let text = &self.texts[match_obj.text_index];
        let matching = self.owned_from_index(text,
                                             match_obj.index_in_str,
                                             match_obj.length);
        let before = self.owned_lines_before(text,
                                             match_obj.start_line,
                                             context_lines,
                                             match_obj.index_in_str);
        let after = self.owned_lines_after(text,
                                           match_obj.end_line,
                                           context_lines,
                                           match_obj.index_in_str + match_obj.length);
        (before, matching, after)
    }

    fn _unsafe_add_child_to_parent(&mut self,
                                   edge: char,
                                   parent_index: usize,
                                   child_index: usize) {
        let parent: &mut SubTrie = self.get_node_mut(parent_index);
        // Shouldn't be called if the edge already exists
        assert!(! parent.children.contains_key(&edge));

        parent.children.insert(edge, child_index);
    }

    pub fn get_text_names(&self) -> Vec<String> {
        let mut text_names: Vec<String> = vec![];
        for text in self.texts.iter() {
            text_names.push(text.name.to_string());
        }
        text_names
    }
}

impl SubTrie {
    fn empty(node_index: usize,
             edge_start_index: usize,
             edge_length: usize) -> Self {
        SubTrie {
            children: HashMap::new(),
            node_index,
            leaf_children: vec![],
            edge_start_index,
            edge_length,
        }
    }

    fn get_child_index(&self, edge: char) -> Option<&usize> {
        self.children.get(&edge)
    }

    fn add_leaf_child(&mut self, key: Leaf) {
        self.leaf_children.push(key);
    }
}

#[derive(Clone,Debug)]
struct WorkingMatchesSet {
    indices: Vec<CharLocation>,
    working_matches: HashMap<CharLocation, WorkingMatch>,
}

impl WorkingMatchesSet {
    fn empty() -> Self {
        WorkingMatchesSet {
            indices: vec![],
            working_matches: HashMap::new(),
        }
    }

    fn only_root_node() -> Self {
        let mut working_matches_set = WorkingMatchesSet::empty();
        let root_location = CharLocation {
            node_index: 0,
            index_in_edge: 0,
        };
        working_matches_set.add_working_match(root_location, 0, 0);
        working_matches_set
    }

    fn add_working_match(&mut self, starting_char: CharLocation, errors: usize, length: usize) {
        let mut min_errors = errors;
        if let Some(existing_match) = self.working_matches.get(&starting_char) {
            // We will reinsert this index with the minimum number of errors
            // we have found - there are multiple paths leading to the same
            // node
            debug!("Updating! existing match is {:?} but we now have one with length {} and errors {}", existing_match, length, errors);
            min_errors = cmp::min(errors, existing_match.errors);
        } else {
            // This entry didn't already exist, add to vec of indices
            self.indices.push(starting_char);
        }
        // Update the error count for this node
        let match_obj = WorkingMatch::new(starting_char, min_errors, length);
        self.working_matches.insert(starting_char, match_obj);
    }

    fn is_empty(&self) -> bool {
        self.indices.is_empty()
    }
}

impl Iterator for WorkingMatchesSet {
    type Item = WorkingMatch;

    fn next(&mut self) -> Option<WorkingMatch> {
        let next_index = self.indices.pop();
        match next_index {
            Some(index) => {
                let match_obj = self.working_matches.remove(&index).expect("Corrupt WorkingMatchesSet object - no match object stored under index found in indices list");
                Some(match_obj)
            },
            None => None,
        }
    }
}

#[derive(Debug)]
pub struct MatcherConfig {
    ignored_characters: HashMap<char, bool>,
    max_errors: usize,
    case_insensitive: bool,
}

impl MatcherConfig {
    fn exact() -> Self {
        MatcherConfig {
            ignored_characters: HashMap::new(),
            max_errors: 0,
            case_insensitive: false
        }
    }

    fn chars_match(&self, char1: &char, char2: &char) -> bool {
        let mut result = false;
        if char1 == char2 {
            result = true;
        } else if self.case_insensitive {
            if char1.to_ascii_lowercase() == char2.to_ascii_lowercase() {
                result = true;
            }
        } else if self.ignored_characters.contains_key(char1) {
            // If the character is in the list of ignorable characters this doesn't add an error
            result = true;
        } else if self.ignored_characters.contains_key(char2) {
            // If the character is in the list of ignorable characters this doesn't add an error
            result = true;
        }
        result
    }
}

#[derive(Debug)]
struct SuffixTrieEditMatcher {
    matches_this_gen: WorkingMatchesSet,
    matches_next_gen: WorkingMatchesSet,
    config: MatcherConfig,
}

impl SuffixTrieEditMatcher {
    fn new(config: MatcherConfig) -> Self {
        SuffixTrieEditMatcher {
            matches_this_gen: WorkingMatchesSet::only_root_node(),
            matches_next_gen: WorkingMatchesSet::empty(),
            config,
        }
    }

    fn add_this_generation(&mut self, errors: usize, location: CharLocation, length: usize) {
        // Only add the match to the list if we haven't exceded the error limit
        if errors <= self.config.max_errors {
            self.matches_this_gen.add_working_match(location, errors, length);
        }
    }

    fn add_next_generation(&mut self, errors: usize, location: CharLocation, length: usize) {
        // Only add the match to the list if we haven't exceded the error limit
        if errors <= self.config.max_errors {
            self.matches_next_gen.add_working_match(location, errors, length);
        }
    }

    fn add_after_pattern_delete(&mut self, existing_match: WorkingMatch) {
        self.add_next_generation(existing_match.errors + 1,
                                 existing_match.starting_char,
                                 existing_match.length);
    }

    fn add_after_text_delete(&mut self,
                             existing_match: WorkingMatch,
                             child: CharLocation) {
        self.add_this_generation(existing_match.errors + 1,
                                 child,
                                 existing_match.length + 1);
    }

    /// Process a possible match/mismatch between the current
    /// pattern character and the edge leading to this child
    /// If they match, or if either is in the set of ignorable characters,
    /// then don't increment the error. Otherwise, it is a mismatch and
    /// increases error by 1.
    fn add_after_mismatch(&mut self,
                          existing_match: WorkingMatch,
                          child: CharLocation,
                          pattern_char: &char,
                          edge: &char) {
        let mut errors_after_match = existing_match.errors;
        if self.config.chars_match(edge, pattern_char) {
            // If the edge matches the character this doesn't add an error
        } else {
            // Else this is a mismatch - increment the error counter
            errors_after_match += 1;
        }
        debug!("Adding node {:?} with errors {} - match/mismatch", child, errors_after_match);
        self.add_next_generation(errors_after_match,
                                 child,
                                 existing_match.length + 1);
    }

    fn go_to_next_generation(&mut self) {
        self.matches_this_gen = self.matches_next_gen.clone();
        self.matches_next_gen = WorkingMatchesSet::empty();
    }

    fn generation_after_char_dict(&self,
                                  suffix_trie: &SuffixTrie,
                                  char_location: CharLocation) -> HashMap<char, CharLocation> {
        let this_node = suffix_trie.get_node(char_location.node_index);
        let mut result = HashMap::new();
        if char_location.index_in_edge + 1 >= this_node.edge_length {
            // This char is at the end of the string of its node, so children
            // of the char are the children of the node itself
            for (edge, child_index) in this_node.children.iter() {
                let child_location = CharLocation {
                    node_index: *child_index,
                    index_in_edge: 0,
                };
                result.insert(*edge, child_location);
            }
            debug!("Children of location {:?} are children of the node", char_location);
        } else {
            // Only one child - the charlocation after this one in the edge of
            // this node
            let new_edge_start_index = char_location.index_in_edge + 1;
            let child_location = CharLocation {
                node_index: char_location.node_index,
                index_in_edge: new_edge_start_index,
            };
            let edge = suffix_trie.str_storage[this_node.edge_start_index + new_edge_start_index].clone();
            result.insert(edge, child_location);
            debug!("Only child of location {:?} is the next character in the edge of the node", char_location);
        }
        debug!("Children are {:#?}", result);
        return result
    }

    fn find_edit_distance_ignore(&mut self,
                                 suffix_trie: &SuffixTrie,
                                 pattern: &str)
        -> Vec<Match> {
            let ascii_pattern = deunicode::deunicode(pattern);

            // Keep track of matches and how many errors they have so far
            for c in ascii_pattern.chars() {
                debug!("Matching char: {}", c);
                debug!("Matching nodes: {:#?}", self);
                while let Some(parent_match) = self.matches_this_gen.next() {
                    debug!("Parent match: {:?}", parent_match);
                    let children = self.generation_after_char_dict(suffix_trie,
                                                                   parent_match.starting_char);
                    for (edge, child) in children.iter() {
                        debug!("Considering child {}", edge);
                        self.add_after_mismatch(parent_match,
                                                *child,
                                                &c,
                                                &edge);
                        self.add_after_pattern_delete(parent_match);
                        self.add_after_text_delete(parent_match,
                                                   *child);
                    }
                    debug!("Left this gen {:#?}", self.matches_this_gen);
                    debug!("Left next gen: {:#?}", self.matches_next_gen);
                }
                if self.matches_next_gen.is_empty() {
                    // There are no partial matches
                    return Vec::new();
                } else {
                    self.go_to_next_generation();
                }
            }
            let mut matches = vec![];
            while let Some(parent_match) = self.matches_this_gen.next() {
                let leaf_children = suffix_trie.get_all_leaf_descendants(parent_match.starting_char.node_index);
                debug!("Matching node: {:#?} with children {:#?}",
                       parent_match.starting_char.node_index,
                       leaf_children);
                let parent_matches = suffix_trie.match_array_from_leaves(leaf_children,
                                                                         parent_match.length,
                                                                         parent_match.errors);
                matches.extend(parent_matches);
            }
            matches.sort();
            matches
        }

    fn find_exact(&mut self, suffix_trie: &SuffixTrie, pattern: &str) -> Vec<Match> {
        let mut parent: &SubTrie = suffix_trie.get_node(0);
        let ascii_pattern = deunicode::deunicode(pattern);
        let mut string_iterator = ascii_pattern.chars();

        let mut found_mismatch = false;
        while let Some(c) = &string_iterator.next() {
            if let Some(child_index) = parent.get_child_index(*c) {
                let edge_match = suffix_trie.consume_all_shared_length(*child_index,
                                                                       &mut string_iterator);
                match edge_match.overlap_type {
                    EdgeMatchKind::WholeMatch =>  {
                        // Continue iterating
                        parent = suffix_trie.get_node(*child_index);
                    },
                    EdgeMatchKind::Diverge(_) => {
                        found_mismatch = true;
                        break;
                    },
                    EdgeMatchKind::EarlyStop => {
                        // Match ended in the middle of the edge (i.e. the rest of our
                        // string is shorter than the edge, but all characters
                        // match).
                        // Set up parent node, but since've we're out of characters
                        // we shouldn't end up iterating more
                        parent = suffix_trie.get_node(*child_index);
                        assert!(!&string_iterator.next().is_some())
                    }
                }
            } else {
                // No match
                found_mismatch = true;
                break;
            }
        }

        let mut matches = Vec::new();
        if !found_mismatch {
            let leaves = suffix_trie.get_all_leaf_descendants(parent.node_index);
            info!("Found {} leaves below parent {}",
                  leaves.len(),
                  parent.node_index);
            matches = suffix_trie.match_array_from_leaves(leaves, ascii_pattern.len(), 0);
            matches.sort();
        }
        info!("Found {} matches", matches.len());
        matches
    }
}