Struct splay_tree::set::SplaySet [] [src]

pub struct SplaySet<T> {
    // some fields omitted
}

A set based on splay tree.

A splay tree based set is a self-adjusting data structure. It performs insertion, removal and look-up in O(log n) amortized time.

It is a logic error for a key to be modified in such a way that the key's ordering relative to any other key, as determined by the Ord trait, changes while it is in the map. This is normally only possible through Cell, RefCell, global state, I/O, or unsafe code.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();

set.insert("foo");
set.insert("bar");
set.insert("baz");
assert_eq!(set.len(), 3);

assert!(set.contains("bar"));
assert!(set.remove("bar"));
assert!(!set.contains("bar"));

assert_eq!(vec!["baz", "foo"], set.into_iter().collect::<Vec<_>>());

Methods

impl<T> SplaySet<T> where T: Ord
[src]

fn new() -> Self

Makes a new SplaySet

Examples

use splay_tree::SplaySet;

let set: SplaySet<()> = SplaySet::new();
assert!(set.is_empty());

fn clear(&mut self)

Clears the set, removing all values.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
set.insert("foo");
set.clear();
assert!(set.is_empty());

fn contains<Q: ?Sized>(&mut self, value: &Q) -> bool where T: Borrow<Q>, Q: Ord

Returns true if the set contains a value.

The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.

Because SplaySet is a self-adjusting amortized data structure, this function requires the mut qualifier for self.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
set.insert("foo");
assert!(set.contains("foo"));
assert!(!set.contains("bar"));

fn get<Q: ?Sized>(&mut self, value: &Q) -> Option<&T> where T: Borrow<Q>, Q: Ord

Returns a reference to the value in the set, if any, that is equal to the given value.

The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.

Because SplaySet is a self-adjusting amortized data structure, this function requires the mut qualifier for self.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
set.insert("foo");
assert_eq!(set.get("foo"), Some(&"foo"));
assert_eq!(set.get("bar"), None);

fn find_lower_bound<Q: ?Sized>(&mut self, value: &Q) -> Option<&T> where T: Borrow<Q>, Q: Ord

Finds a minimum element which satisfies "greater than or equal to value" condition in the set.

The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
set.insert(1);
set.insert(3);

assert_eq!(set.find_lower_bound(&0), Some(&1));
assert_eq!(set.find_lower_bound(&1), Some(&1));
assert_eq!(set.find_lower_bound(&4), None);

fn find_upper_bound<Q: ?Sized>(&mut self, value: &Q) -> Option<&T> where T: Borrow<Q>, Q: Ord

Finds a minimum element which satisfies "greater than value" condition in the set.

The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
set.insert(1);
set.insert(3);

assert_eq!(set.find_upper_bound(&0), Some(&1));
assert_eq!(set.find_upper_bound(&1), Some(&3));
assert_eq!(set.find_upper_bound(&4), None);

fn insert(&mut self, value: T) -> bool

Adds a value to the set.

If the set did not have this value present, true is returned.

If the set did have this value present, false is returned, and the entry is not updated.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
assert!(set.insert("foo"));
assert!(!set.insert("foo"));
assert_eq!(set.len(), 1);

fn replace(&mut self, value: T) -> Option<T>

Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
assert_eq!(set.replace("foo"), None);
assert_eq!(set.replace("foo"), Some("foo"));

fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool where T: Borrow<Q>, Q: Ord

Removes a value from the set. Returns true is the value was present in the set.

The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
set.insert("foo");
assert_eq!(set.remove("foo"), true);
assert_eq!(set.remove("foo"), false);

fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> where T: Borrow<Q>, Q: Ord

Removes and returns the value in the set, if any, that is equal to the given one.

The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
set.insert("foo");
assert_eq!(set.take("foo"), Some("foo"));
assert_eq!(set.take("foo"), None);

fn difference<'a>(&'a self, other: &'a Self) -> Difference<'a, T>

Visits the values representing the difference, in ascending order.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();

assert_eq!(a.difference(&b).cloned().collect::<Vec<_>>(),
           [1]);

fn symmetric_difference<'a>(&'a self, other: &'a Self) -> SymmetricDifference<'a, T>

Visits the values representing the symmetric difference, in ascending order.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();

assert_eq!(a.symmetric_difference(&b).cloned().collect::<Vec<_>>(),
           [1, 4]);

fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, T>

Visits the values representing the intersection, in ascending order.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();

assert_eq!(a.intersection(&b).cloned().collect::<Vec<_>>(),
           [2, 3]);

fn union<'a>(&'a self, other: &'a Self) -> Union<'a, T>

Visits the values representing the union, in ascending order.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();

assert_eq!(a.union(&b).cloned().collect::<Vec<_>>(),
           [1, 2, 3, 4]);

fn is_disjoint(&self, other: &Self) -> bool

Returns true if the set has no elements in common with other. This is equivalent to checking for an empty intersection.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
let c: SplaySet<_> = vec![4, 5, 6].into_iter().collect();

assert!(!a.is_disjoint(&b));
assert!(!b.is_disjoint(&c));
assert!(a.is_disjoint(&c));
assert!(c.is_disjoint(&a));

fn is_subset(&self, other: &Self) -> bool

Returns true if the set is a subset of another.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
let c: SplaySet<_> = vec![1, 2, 3, 4].into_iter().collect();

assert!(!a.is_subset(&b));
assert!(!b.is_subset(&a));
assert!(!c.is_subset(&a));
assert!(a.is_subset(&c));
assert!(b.is_subset(&c));
assert!(c.is_subset(&c));

fn is_superset(&self, other: &Self) -> bool

Returns true if the set is a superset of another.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![2, 3, 4].into_iter().collect();
let c: SplaySet<_> = vec![1, 2, 3, 4].into_iter().collect();

assert!(!a.is_superset(&b));
assert!(!b.is_superset(&a));
assert!(!a.is_superset(&c));
assert!(c.is_superset(&a));
assert!(c.is_superset(&b));
assert!(c.is_superset(&c));

impl<T> SplaySet<T>
[src]

fn len(&self) -> usize

Returns the number of elements in the set.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
set.insert("foo");
set.insert("bar");
assert_eq!(set.len(), 2);

fn is_empty(&self) -> bool

Returns true if the set contains no elements.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
assert!(set.is_empty());

set.insert("foo");
assert!(!set.is_empty());

set.clear();
assert!(set.is_empty());

fn iter(&self) -> Iter<T>

Gets an iterator over the SplaySet's contents, in sorted order.

Examples

use splay_tree::SplaySet;

let mut set = SplaySet::new();
set.insert("foo");
set.insert("bar");
set.insert("baz");

assert_eq!(set.iter().collect::<Vec<_>>(), [&"bar", &"baz", &"foo"]);

Trait Implementations

impl<T: Ord> Ord for SplaySet<T>
[src]

fn cmp(&self, __arg_0: &SplaySet<T>) -> Ordering

This method returns an Ordering between self and other. Read more

impl<T: PartialOrd> PartialOrd for SplaySet<T>
[src]

fn partial_cmp(&self, __arg_0: &SplaySet<T>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more

fn lt(&self, __arg_0: &SplaySet<T>) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more

fn le(&self, __arg_0: &SplaySet<T>) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

fn gt(&self, __arg_0: &SplaySet<T>) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more

fn ge(&self, __arg_0: &SplaySet<T>) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl<T: Eq> Eq for SplaySet<T>
[src]

impl<T: PartialEq> PartialEq for SplaySet<T>
[src]

fn eq(&self, __arg_0: &SplaySet<T>) -> bool

This method tests for self and other values to be equal, and is used by ==. Read more

fn ne(&self, __arg_0: &SplaySet<T>) -> bool

This method tests for !=.

impl<T: Hash> Hash for SplaySet<T>
[src]

fn hash<__HT: Hasher>(&self, __arg_0: &mut __HT)

Feeds this value into the state given, updating the hasher as necessary.

fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher
1.3.0

Feeds a slice of this type into the state provided.

impl<T: Clone> Clone for SplaySet<T>
[src]

fn clone(&self) -> SplaySet<T>

Returns a copy of the value. Read more

fn clone_from(&mut self, source: &Self)
1.0.0

Performs copy-assignment from source. Read more

impl<T: Debug> Debug for SplaySet<T>
[src]

fn fmt(&self, __arg_0: &mut Formatter) -> Result

Formats the value using the given formatter.

impl<T> Default for SplaySet<T> where T: Ord
[src]

fn default() -> Self

Returns the "default value" for a type. Read more

impl<T> FromIterator<T> for SplaySet<T> where T: Ord
[src]

fn from_iter<I>(iter: I) -> Self where I: IntoIterator<Item=T>

Creates a value from an iterator. Read more

impl<T> IntoIterator for SplaySet<T>
[src]

type Item = T

The type of the elements being iterated over.

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more

impl<'a, T> IntoIterator for &'a SplaySet<T>
[src]

type Item = &'a T

The type of the elements being iterated over.

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more

impl<T> Extend<T> for SplaySet<T> where T: Ord
[src]

fn extend<I>(&mut self, iter: I) where I: IntoIterator<Item=T>

Extends a collection with the contents of an iterator. Read more

impl<'a, T> Extend<&'a T> for SplaySet<T> where T: Copy + 'a + Ord
[src]

fn extend<I>(&mut self, iter: I) where I: IntoIterator<Item=&'a T>

Extends a collection with the contents of an iterator. Read more

impl<'a, 'b, T> Sub<&'b SplaySet<T>> for &'a SplaySet<T> where T: Ord + Clone
[src]

type Output = SplaySet<T>

The resulting type after applying the - operator

fn sub(self, rhs: &SplaySet<T>) -> SplaySet<T>

Returns the difference of self and rhs as a new SplaySet<T>.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![3, 4, 5].into_iter().collect();

assert_eq!((&a - &b).into_iter().collect::<Vec<_>>(),
           [1, 2]);

impl<'a, 'b, T> BitXor<&'b SplaySet<T>> for &'a SplaySet<T> where T: Ord + Clone
[src]

type Output = SplaySet<T>

The resulting type after applying the ^ operator

fn bitxor(self, rhs: &SplaySet<T>) -> SplaySet<T>

Returns the symmetric difference of self and rhs as a new SplaySet<T>.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![3, 4, 5].into_iter().collect();

assert_eq!((&a ^ &b).into_iter().collect::<Vec<_>>(),
           [1, 2, 4, 5]);

impl<'a, 'b, T> BitAnd<&'b SplaySet<T>> for &'a SplaySet<T> where T: Ord + Clone
[src]

type Output = SplaySet<T>

The resulting type after applying the & operator

fn bitand(self, rhs: &SplaySet<T>) -> SplaySet<T>

Returns the intersection of self and rhs as a new SplaySet<T>.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![3, 4, 5].into_iter().collect();

assert_eq!((&a & &b).into_iter().collect::<Vec<_>>(),
           [3]);

impl<'a, 'b, T> BitOr<&'b SplaySet<T>> for &'a SplaySet<T> where T: Ord + Clone
[src]

type Output = SplaySet<T>

The resulting type after applying the | operator

fn bitor(self, rhs: &SplaySet<T>) -> SplaySet<T>

Returns the union of self and rhs as a new SplaySet<T>.

Examples

use splay_tree::SplaySet;

let a: SplaySet<_> = vec![1, 2, 3].into_iter().collect();
let b: SplaySet<_> = vec![3, 4, 5].into_iter().collect();

assert_eq!((&a | &b).into_iter().collect::<Vec<_>>(),
           [1, 2, 3, 4, 5]);