1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
//! I2C driver for the SPL06-007 pressure and temperature sensor. This sensor
//! is available as a breakout board for the Arduino platform. This driver
//! may also work with the SPL06-001, but this has not been tested.
//!
//! This sensor operates on the I2c address 0x76 and is connected to the
//! I2C bus on the Arduino Uno. Instantiate the Barometer struct with a
//! reference to the I2C bus and call the init() method to initialise the
//! sensor to default values. The sensor will then be ready to read
//! temperature and pressure values.
//!
//! Example usage:
//!
//! ```notest
//! use spl06_007::Barometer;
//!
//! let mut barometer = Barometer::new(&mut i2c).expect("Failed to instantiate barometer");
//!
//! barometer.init().expect("Failed to initialise barometer");
//!
//! let temp = barometer.get_temperature().unwrap();
//! let pressure = barometer.get_pressure().unwrap();
//! let altitude = barometer.altitude(1020.0).unwrap();
//! ```
//!
//! It is necessary to call `init` before any other methods are called. This method will set some default values for the sensor and is suitable for most use cases. Alternatively you can set the mode, sample rate, and oversampling values manually:
//!
//! ```notest
//! # use embedded_hal_mock::i2c::{Mock as I2c, Transaction as I2cTransaction};
//! # use spl06_007::Barometer;
//! # let mut i2c = I2c::new(&[]);
//!
//! # let mut barometer = Barometer::new(&mut i2c).expect("Failed to instantiate barometer");
//! barometer.set_pressure_config(SampleRate::Single, SampleRate::Eight);
//! barometer.set_temperature_config(SampleRate::Single, SampleRate::Eight);
//! barometer.set_mode(Mode::ContinuousPressureTemperature);
//! ```
//!
//! This is useful if you want to change the sample rate or oversampling values, such as for more rapid updates. It is also possible to set the mode to `Mode::Standby` to reduce power consumption. Other modes, including measuring only when polled, are not well supported at this time.
//!
//!

#![forbid(unsafe_code)]
#![warn(missing_docs)]
#![warn(missing_debug_implementations)]
#![cfg_attr(not(test), no_std)]

extern crate embedded_hal as hal;
extern crate libm;

use embedded_hal::blocking::i2c::{Read, Write, WriteRead};
use libm::powf;

const ADDR: u8 = 0x76;
const PRS: u8 = 0x00;
const TMP: u8 = 0x03;
const PRS_CFG: u8 = 0x06;
const TMP_CFG: u8 = 0x07;
const MEAS_CFG: u8 = 0x08;
const CFG_REG: u8 = 0x09;
// const INT_STS: u8 = 0x0A;
// const FIFO_STS: u8 = 0x0B;
const RESET: u8 = 0x0C;
const ID: u8 = 0x0D;
const COEF: u8 = 0x10;

/// Use [Barometer::set_mode] to set the mode.
///
/// In continuous mode, the sensor will take measurements at the rate set by
/// [Barometer::set_pressure_config] and [Barometer::set_temperature_config]. Note that pressure
/// readings are dependent on temperature readings, so it is not recommended to use continuous
/// mode for pressure readings because they will be calculated using out-of-date temperature
/// readings.
///
/// Temperature and Pressure modes are intended to be used when the sensor is in standby mode.
/// They will take a new temperature or pressure reading, and then set the sensor to  standby
/// mode. Setting the mode to one of these modes is equivalent to calling
/// [Barometer::request_temperature_reading] or [Barometer::request_pressure_reading].
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Mode {
    /// The default mode. The sensor will not take any measurements. It is still possible to read
    /// the temperature and pressure, but the values will not be updated.
    Standby = 0b000,
    /// Take a single temperature reading and then return to standby mode.
    Pressure = 0b001,
    /// Take a single pressure reading and then return to standby mode.
    Temperature = 0b010,
    /// Take continuous pressure readings at the configured sample rate. Note that this mode is
    /// not recommended because pressure readings are dependent on temperature readings, so
    /// they will be calculated using out-of-date temperature readings.
    ContinuousPressure = 0b101,
    /// Take continuous temperature readings at the configured sample rate.
    ContinuousTemperature = 0b110,
    /// Take continuous pressure and temperature readings at the configured sample rate.
    ContinuousPressureTemperature = 0b111,
}

/// Setting for the sampling and oversampling rates.
///
/// Use [Barometer::set_pressure_config] and [Barometer::set_temperature_config] to set the
/// sampling and oversampling rates. The oversampling rate is the number of samples taken and
/// averaged to produce a single reading. The sampling rate is the number of times per second
/// that the sensor will record a new reading.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub enum SampleRate {
    /// Take a single measurement per second or single oversample per measurement.
    One = 0b000,
    /// Two measurements per second or two oversamples per measurement. Labelled "Low Power" mode
    /// in the datasheet.
    Two = 0b001,
    /// Four measurements per second or four oversamples per measurement.
    Four = 0b010,
    /// Eight measurements per second or eight oversamples per measurement. This is the default
    /// value.
    Eight = 0b011,
    /// Sixteen measurements per second or sixteen oversamples per measurement. Labelled "Standard"
    ///  mode in the datasheet.
    Sixteen = 0b100,
    /// Thirty-two measurements per second or thirty-two oversamples per measurement.
    ThirtyTwo = 0b101,
    /// Sixty-four measurements per second or sixty-four oversamples per measurement. Labelled
    /// "High Precision" mode in the datasheet.
    SixtyFour = 0b110,
    /// One hundred twenty-eight measurements per second or one hundred twenty-eight oversamples
    /// per measurement.
    OneTwentyEight = 0b111,
}

// pub enum FifoStatus {
//     Empty = 0b01,
//     Partial = 0b00,
//     Full = 0b10,
// }

/// The SPL06-007 barometer.
///
/// This struct is generic over the I2C bus type. See method documentation for details.
#[derive(Debug)]
pub struct Barometer<'a, I2C>
where
    I2C: Read + Write + WriteRead,
{
    i2c: &'a mut I2C,
    calibration_data: CalibrationData,
    temperature_oversample: SampleRate,
    pressure_oversample: SampleRate,
}

impl<'a, I2C, E> Barometer<'a, I2C>
where
    I2C: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
{
    /// Create a new instance of the barometer.
    ///
    /// This method will read the calibration data from the sensor and store it in the struct, so
    /// it is important that the I2C bus is initialised before calling this method. This method
    /// will also set the sensor to standby mode - use [Barometer::init] to initialise the sensor
    /// to default values.
    pub fn new(i2c: &'a mut I2C) -> Result<Self, E> {
        let mut barometer = Barometer {
            i2c,
            calibration_data: CalibrationData::default(),
            temperature_oversample: SampleRate::Eight,
            pressure_oversample: SampleRate::Eight,
        };
        barometer.set_mode(Mode::Standby)?;
        barometer.write(&[CFG_REG, 0x00])?; // disable FIFO
        while !barometer.calibration_data_is_available()? {}
        barometer.calibration_data = barometer.get_calibration_data()?;
        Ok(barometer)
    }

    /// Initialise the sensor to default values:
    /// - Pressure sample rate: 1
    /// - Pressure oversample rate: 8
    /// - Temperature oversample rate: 1
    /// - Temperature sample rate: 8
    /// - Mode: Continuous pressure and temperature
    /// - FIFO disabled
    /// - Interrupts disabled
    pub fn init(&mut self) -> Result<(), E> {
        self.set_pressure_config(SampleRate::One, SampleRate::Eight)?;
        self.set_temperature_config(SampleRate::One, SampleRate::Eight)?;
        self.set_mode(Mode::ContinuousPressureTemperature)?;
        self.write(&[CFG_REG, 0x00])?; // disable FIFO
        Ok(())
    }

    /// First four bits: Product ID
    /// Last four bits: Revision ID
    pub fn sensor_id(&mut self) -> Result<u8, E> {
        self.read8(ID)
    }

    /// Read and calculate the temperature in degrees celsius
    pub fn get_temperature(&mut self) -> Result<f32, E> {
        let cal = self.calibration_data;
        let temp = cal.c1 as f32 * self.traw_sc()?;
        let offset = cal.c0 as f32 / 2.0;
        Ok(temp + offset)
    }

    /// Read and calculate the pressure in millibars
    pub fn get_pressure(&mut self) -> Result<f32, E> {
        let cal = self.calibration_data;
        let traw_sc = self.traw_sc()?;
        let praw_sc = self.praw_sc()?;

        let pcomp = cal.c00 as f32
            + praw_sc * (cal.c10 as f32 + praw_sc * (cal.c20 as f32 + praw_sc * cal.c30 as f32))
            + traw_sc * cal.c01 as f32
            + traw_sc * praw_sc * (cal.c11 as f32 + praw_sc * cal.c21 as f32);
        Ok(pcomp / 100.0)
    }

    /// Read and calculate the altitude in metres
    pub fn altitude(&mut self, sea_level_hpa: f32) -> Result<f32, E> {
        Ok(44330.0 * (1.0 - powf(self.get_pressure()? / sea_level_hpa, 0.1903)))
    }

    fn raw_pressure(&mut self) -> Result<i32, E> {
        self.read24(PRS)
    }

    fn raw_temperature(&mut self) -> Result<i32, E> {
        self.read24(TMP)
    }

    fn traw_sc(&mut self) -> Result<f32, E> {
        let mut temp = self.raw_temperature()?;
        if self.temperature_oversample > SampleRate::Eight {
            temp <<= 1;
        }
        Ok(temp as f32 / self.temperature_oversample.scale_factor())
    }

    fn praw_sc(&mut self) -> Result<f32, E> {
        let mut pressure = self.raw_pressure()?;
        if self.pressure_oversample > SampleRate::Eight {
            pressure <<= 1;
        }
        Ok(pressure as f32 / self.pressure_oversample.scale_factor())
    }

    fn calibration_data_is_available(&mut self) -> Result<bool, E> {
        Ok((self.read8(MEAS_CFG)? >> 7) == 1)
    }

    /// Sensor data might not be available after the sensor is powered on or settings changed.
    /// Note that you should use [Barometer::new_data_is_available] for checking if new data is available.
    pub fn sensor_data_is_ready(&mut self) -> Result<bool, E> {
        Ok(((self.read8(MEAS_CFG)? >> 6) & 0b1) == 1)
    }

    /// Returns a tuple of `(temperature, pressure)`. `true` if new data is available
    pub fn new_data_is_available(&mut self) -> Result<(bool, bool), E> {
        let byte = self.read8(MEAS_CFG)?;
        Ok((((byte >> 5) & 1) == 1, ((byte >> 4) & 1) == 1))
    }

    // pub fn fifo_is_enabled(&mut self) -> Result<bool, E> {
    //     let byte = self.read8(CFG_REG)? >> 1;
    //     Ok((byte & 1) == 1)
    // }

    // pub fn fifo_status(&mut self) -> Result<FifoStatus, E> {
    //     match self.read8(FIFO_STS)? & 0b11 {
    //         0b01 => Ok(FifoStatus::Empty),
    //         0b00 => Ok(FifoStatus::Partial),
    //         0b10 => Ok(FifoStatus::Full),
    //         _ => unreachable!("Not a valid FIFO status"),
    //     }
    // }

    // pub fn set_fifo(&mut self, value: bool) -> Result<(), E> {
    //     let mut reg = self.read8(CFG_REG)? & 0b11111101;
    //     reg |= (value as u8) << 1;
    //     self.write(&[CFG_REG, reg])
    // }

    // pub fn flush_fifo(&mut self) -> Result<(), E> {
    //     self.write(&[RESET, 0x80])
    // }

    fn set_pressure_shift(&mut self, value: bool) -> Result<(), E> {
        let mut reg = self.read8(CFG_REG)? & 0b11111011;
        reg |= (value as u8) << 2;
        self.write(&[CFG_REG, reg])
    }

    fn set_temp_shift(&mut self, value: bool) -> Result<(), E> {
        let mut reg = self.read8(CFG_REG)? & 0b11110111;
        reg |= (value as u8) << 3;
        self.write(&[CFG_REG, reg])
    }

    /// Reset the sensor. This will reset all configuration registers to their default values.
    /// You will need to reinitialse the sensor after this.
    pub fn soft_reset(&mut self) -> Result<(), E> {
        self.write(&[RESET, 0x09])
    }

    /// The sample rate is the number of measurements available per second.
    /// The oversample rate is the number of individual measurements used to calculate the final
    /// value for each final measurement. Higher oversample rates will give more accurate results.
    pub fn set_temperature_config(
        &mut self,
        sample: SampleRate,
        oversample: SampleRate,
    ) -> Result<(), E> {
        self.set_temp_shift(oversample > SampleRate::Eight)?;
        self.temperature_oversample = oversample;
        let byte = 0x80 | (sample as u8) << 4 | oversample as u8;
        self.write(&[TMP_CFG, byte])
    }

    /// The sample rate is the number of measurements available per second.
    /// The oversample rate is the number of individual measurements used to calculate the final
    /// value for each final measurement. Higher oversample rates will give more accurate results.
    ///
    /// Note that the pressure readings are dependent on temperature readings, so the temperature
    /// oversample rate should be equal or higher than the pressure oversample rate.
    pub fn set_pressure_config(
        &mut self,
        sample: SampleRate,
        oversample: SampleRate,
    ) -> Result<(), E> {
        self.set_pressure_shift(oversample > SampleRate::Eight)?;
        self.pressure_oversample = oversample;
        let byte = (sample as u8) << 4 | oversample as u8;
        self.write(&[PRS_CFG, byte])
    }

    /// Set the mode of the sensor. See the [Mode] enum for more details.
    pub fn set_mode(&mut self, mode: Mode) -> Result<(), E> {
        self.write(&[MEAS_CFG, mode as u8])
    }

    /// Request a temperature reading. This function is intended to be used when the sensor is in
    /// standby mode. It will take a new temperature reading, and then return to standby mode. If
    /// the sensor is in continuous mode, this function leaves the sensor in standby mode.
    ///
    /// This will not block until the reading is complete. You can check if the reading is
    /// complete using [Barometer::new_data_is_available]. You can then read the temperature using
    /// [Barometer::get_temperature].
    /// 
    /// For a more straightforward interface when in standby mode, see [Barometer::get_temperature_blocking].
    pub fn request_temperature_reading(&mut self) -> Result<(), E> {
        self.set_mode(Mode::Temperature)
    }

    /// Request a pressure reading. This function is intended to be used when the sensor is in
    /// standby mode. It will take a new temperature reading, and then return to standby mode. If
    /// the sensor is in continuous mode, this function leaves the sensor in standby mode.
    ///
    /// This will not block until the reading is complete. You can check if the reading is
    /// complete using [Barometer::new_data_is_available]. You can then read the pressure using
    /// [Barometer::get_pressure].
    ///
    /// Because the pressure reading is dependent on the temperature reading, it is recommended
    /// that you request a temperature reading first, and then a pressure reading. This will
    /// ensure that the temperature reading is recent. If you have recently requested a temperature
    /// reading and do not expect the temperature to have changed significantly, you can skip the
    /// temperature reading.
    /// 
    /// For a more straightforward interface when in standby mode, see [Barometer::get_pressure_blocking].
    pub fn request_pressure_reading(&mut self) -> Result<(), E> {
        self.set_mode(Mode::Pressure)
    }

    /// Request a temperature reading. This function is intended to be used when the sensor is in
    /// standby mode. It will take a new temperature reading, and then return to standby mode. If
    /// the sensor is in continuous mode, this function leaves the sensor in standby mode.
    ///
    /// This will block until the reading is complete, and then return the result.
    pub fn get_temperature_blocking(&mut self) -> Result<f32, E> {
        self.request_temperature_reading()?;
        while !self.new_data_is_available()?.0 {
            // wait
        }
        self.get_temperature()
    }

    /// Request a pressure reading. This function is intended to be used when the sensor is in
    /// standby mode. It will take a new temperature reading, and then return to standby mode. If
    /// the sensor is in continuous mode, this function leaves the sensor in standby mode.
    ///
    /// Unlike [Barometer::request_pressure_reading], this function will also request a temperature reading
    /// first, so there is no need to do this manually. If you want both a temperature and pressure
    /// reading, it is recommended that you use this function first and then call [Barometer::get_temperature]
    /// to get the saved temperature reading rather than requesting a new one with [Barometer::get_temperature_blocking].
    ///
    /// This function will block until the reading is complete, and then return the result.
    pub fn get_pressure_blocking(&mut self) -> Result<f32, E> {
        self.get_temperature_blocking()?;
        self.request_pressure_reading()?;
        while !self.new_data_is_available()?.1 {
            // wait
        }
        self.get_pressure()
    }

    fn get_calibration_data(&mut self) -> Result<CalibrationData, E> {
        let mut data = [0; 2];

        self.read(COEF, &mut data)?;
        let mut c0 = ((data[0] as u16) << 4) | data[1] as u16 >> 4;
        if c0 & (1 << 11) != 0 {
            c0 |= 0xF000;
        }

        // c1
        self.read(COEF + 1, &mut data)?;
        let mut c1 = (((data[0] & 0xF) as u16) << 8) | data[1] as u16;
        if c1 & (1 << 11) != 0 {
            c1 |= 0xF000;
        }

        // c00
        let mut data = [0; 3];
        self.read(COEF + 3, &mut data)?;
        let c00 = if data[0] & 0x80 != 0 { 0xFFF00000 } else { 0 }
            | ((data[0] as u32) << 12)
            | ((data[1] as u32) << 4)
            | ((data[2] as u32) & 0xF0) >> 4;

        // c10
        self.read(COEF + 5, &mut data)?;
        let c10 = if data[0] & 0x8 != 0 { 0xFFF00000 } else { 0 }
            | ((data[0] as u32) & 0x0F) << 16
            | (data[1] as u32) << 8
            | data[2] as u32;

        Ok(CalibrationData {
            c0: c0 as i16,
            c1: c1 as i16,
            c00: c00 as i32,
            c10: c10 as i32,
            c01: self.read16(COEF + 8)? as i32,
            c11: self.read16(COEF + 10)? as i32,
            c20: self.read16(COEF + 12)? as i32,
            c21: self.read16(COEF + 14)? as i32,
            c30: self.read16(COEF + 16)? as i32,
        })
    }

    fn write(&mut self, data: &[u8]) -> Result<(), E> {
        self.i2c.write(ADDR, data)
    }

    fn read(&mut self, reg: u8, buffer: &mut [u8]) -> Result<(), E> {
        self.i2c.write_read(ADDR, &[reg], buffer)
    }

    fn read8(&mut self, reg: u8) -> Result<u8, E> {
        let mut buffer = [0u8];
        match self.read(reg, &mut buffer) {
            Ok(_) => Ok(buffer[0]),
            Err(res) => Err(res),
        }
    }

    fn read16(&mut self, reg: u8) -> Result<i16, E> {
        let mut buffer = [0u8; 2];
        match self.read(reg, &mut buffer) {
            Ok(_) => Ok((((buffer[0] as u16) << 8) | buffer[1] as u16) as i16),
            Err(res) => Err(res),
        }
    }

    fn read24(&mut self, reg: u8) -> Result<i32, E> {
        let mut buffer = [0; 3];
        self.read(reg, &mut buffer)?;
        let [msb, lsb, xlsb] = buffer.map(|x| x as u32);
        let res: u32 =
            if msb & 0x80 != 0 { 0xFF << 24 } else { 0x00 } | (msb << 16) | (lsb << 8) | xlsb;
        Ok(res as i32)
    }
}

#[derive(Debug, Clone, Copy, Default)]
struct CalibrationData {
    c0: i16,
    c1: i16,
    c00: i32,
    c10: i32,
    c01: i32,
    c11: i32,
    c20: i32,
    c21: i32,
    c30: i32,
}

impl SampleRate {
    fn scale_factor(&self) -> f32 {
        match self {
            Self::One => 524288.0,
            Self::Two => 1572864.0,
            Self::Four => 3670016.0,
            Self::Eight => 7864320.0,
            Self::Sixteen => 253952.0,
            Self::ThirtyTwo => 516096.0,
            Self::SixtyFour => 1040384.0,
            Self::OneTwentyEight => 2088960.0,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::vec::Vec;

    use embedded_hal_mock::i2c::{Mock as I2cMock, Transaction as I2cTransaction};
    fn expectations(to_add: Vec<I2cTransaction>) -> Vec<I2cTransaction> {
        [
            // Barometer::new
            I2cTransaction::write(ADDR, vec![MEAS_CFG, 0x00]),
            I2cTransaction::write(ADDR, vec![CFG_REG, 0x00]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0x80]),
            I2cTransaction::write_read(ADDR, vec![COEF], vec![0xc, 0xbe]),
            I2cTransaction::write_read(ADDR, vec![COEF + 1], vec![0xbe, 0xfc]),
            I2cTransaction::write_read(ADDR, vec![COEF + 3], vec![0x13, 0xd9, 0xaf]),
            I2cTransaction::write_read(ADDR, vec![COEF + 5], vec![0xaf, 0x2b, 0x34]),
            I2cTransaction::write_read(ADDR, vec![COEF + 8], vec![0xf3, 0xf7]),
            I2cTransaction::write_read(ADDR, vec![COEF + 10], vec![0x4, 0xff]),
            I2cTransaction::write_read(ADDR, vec![COEF + 12], vec![0xda, 0x5a]),
            I2cTransaction::write_read(ADDR, vec![COEF + 14], vec![0x0, 0xa]),
            I2cTransaction::write_read(ADDR, vec![COEF + 16], vec![0xfb, 0x1b]),
        ]
        .to_vec()
        .into_iter()
        .chain(to_add)
        .collect::<std::vec::Vec<_>>()
    }

    #[test]
    fn test_barometer_new_init() {
        let expectations = expectations(vec![
            I2cTransaction::write_read(ADDR, vec![CFG_REG], vec![0]),
            I2cTransaction::write(ADDR, vec![CFG_REG, 0]),
            I2cTransaction::write(ADDR, vec![PRS_CFG, SampleRate::Eight as u8]),
            I2cTransaction::write_read(ADDR, vec![CFG_REG], vec![0]),
            I2cTransaction::write(ADDR, vec![CFG_REG, 0]),
            I2cTransaction::write(ADDR, vec![TMP_CFG, 0x80 | SampleRate::Eight as u8]),
            I2cTransaction::write(
                ADDR,
                vec![MEAS_CFG, Mode::ContinuousPressureTemperature as u8],
            ),
            I2cTransaction::write(ADDR, vec![CFG_REG, 0x00]),
        ]);
        let mut i2c = I2cMock::new(&expectations);
        let mut barometer = Barometer::new(&mut i2c).unwrap();
        barometer.init().unwrap();
    }

    #[test]
    fn test_barometer_read() {
        let expectations = expectations(vec![
            I2cTransaction::write_read(ADDR, vec![0], vec![0, 1, 2]),
            I2cTransaction::write_read(ADDR, vec![0], vec![0]),
            I2cTransaction::write_read(ADDR, vec![0], vec![0, 1]),
            I2cTransaction::write_read(ADDR, vec![0], vec![0, 1, 2]),
        ]);
        let mut i2c = I2cMock::new(&expectations);
        let mut barometer = Barometer::new(&mut i2c).unwrap();

        let mut buffer = [0; 3];
        barometer.read(0, &mut buffer).unwrap();
        barometer.read8(0).unwrap();
        barometer.read16(0).unwrap();
        barometer.read24(0).unwrap();
        assert_eq!(buffer, [0, 1, 2]);
    }

    #[test]
    fn test_barometer_get_calibration_data() {
        let expectations = expectations(vec![]);
        let mut i2c = I2cMock::new(&expectations);
        let mut barometer = Barometer {
            i2c: &mut i2c,
            calibration_data: CalibrationData::default(),
            temperature_oversample: SampleRate::Eight,
            pressure_oversample: SampleRate::Eight,

        };
        // remainder of new
        barometer.set_mode(Mode::Standby).unwrap();
        barometer.write(&[CFG_REG, 0x00]).unwrap(); // disable FIFO
        barometer.calibration_data_is_available().unwrap();
        let cal_data = barometer.get_calibration_data().unwrap();
        assert_eq!(cal_data.c0, 203, "c0");
        assert_eq!(cal_data.c1, -260, "c1");
        assert_eq!(cal_data.c00, 81306, "c00");
        assert_eq!(cal_data.c10, -54476, "c10");
        assert_eq!(cal_data.c01, -3081, "c01");
        assert_eq!(cal_data.c11, 1279, "c11");
        assert_eq!(cal_data.c20, -9638, "c20");
        assert_eq!(cal_data.c21, 10, "c21");
        assert_eq!(cal_data.c30, -1253, "c30");
    }

    #[test]
    fn test_barometer_read_temperature() {
        let expectations = expectations(vec![
            I2cTransaction::write_read(ADDR, vec![TMP], vec![0, 1, 2]),
        ]);
        let mut i2c = I2cMock::new(&expectations);
        let mut barometer = Barometer::new(&mut i2c).unwrap();
        barometer.get_temperature().unwrap();
    }

    #[test]
    fn test_barometer_read_pressure() {
        let expectations = expectations(vec![
            I2cTransaction::write_read(ADDR, vec![TMP], vec![0, 1, 2]),
            I2cTransaction::write_read(ADDR, vec![PRS], vec![0, 1, 2]),
        ]);
        let mut i2c = I2cMock::new(&expectations);
        let mut barometer = Barometer::new(&mut i2c).unwrap();
        barometer.get_pressure().unwrap();
    }

    #[test]
    fn test_barometer_read_altitude() {
        let expectations = expectations(vec![
            I2cTransaction::write_read(ADDR, vec![TMP], vec![0, 1, 2]),
            I2cTransaction::write_read(ADDR, vec![PRS], vec![0, 1, 2]),
        ]);
        let mut i2c = I2cMock::new(&expectations);
        let mut barometer = Barometer::new(&mut i2c).unwrap();
        let altitude = barometer.altitude(1000.0).unwrap();
        assert_eq!(altitude, 1712.0905); // TODO: Use more realistic values
    }

    #[test]
    fn test_get_temperature_blocking() {
        let expectations = expectations(vec![
            I2cTransaction::write(ADDR, vec![MEAS_CFG, Mode::Temperature as u8]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0b100000]),
            I2cTransaction::write_read(ADDR, vec![TMP], vec![0, 1, 2]),
        ]);
        let mut i2c = I2cMock::new(&expectations);
        let mut barometer = Barometer::new(&mut i2c).unwrap();
        let temperature = barometer.get_temperature_blocking().unwrap();
        assert_eq!(temperature, 101.49147); // TODO: Use more realistic values
    }

    #[test]
    fn test_get_pressure_blocking() {
        let expectations = expectations(vec![
            I2cTransaction::write(ADDR, vec![MEAS_CFG, Mode::Temperature as u8]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0b100000]),
            I2cTransaction::write_read(ADDR, vec![TMP], vec![0, 1, 2]),
            I2cTransaction::write(ADDR, vec![MEAS_CFG, Mode::Pressure as u8]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0]),
            I2cTransaction::write_read(ADDR, vec![MEAS_CFG], vec![0b10000]),
            I2cTransaction::write_read(ADDR, vec![TMP], vec![0, 1, 2]),
            I2cTransaction::write_read(ADDR, vec![PRS], vec![0, 1, 2]),
        ]);
        let mut i2c = I2cMock::new(&expectations);
        let mut barometer = Barometer::new(&mut i2c).unwrap();
        let pressure = barometer.get_pressure_blocking().unwrap();
        assert_eq!(pressure, 813.0411); // TODO: Use more realistic values
    }
}