spirv_cross2/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
#![cfg_attr(docsrs, feature(doc_cfg, doc_cfg_hide))]
#![forbid(missing_docs)]
//! Safe and sound Rust bindings to [SPIRV-Cross](https://github.com/KhronosGroup/SPIRV-Cross).
//!
//! All backends exposed by the SPIRV-Cross C API are fully supported, including
//!
//! * [GLSL](targets::Glsl)
//! * [HLSL](targets::Hlsl)
//! * [MSL](targets::Msl)
//! * [JSON](targets::Json)
//! * [C++](targets::Cpp)
//! * [Reflection Only](targets::None)
//!
//! The API provided is roughly similar to the SPIRV-Cross [`Compiler`](https://github.com/KhronosGroup/SPIRV-Cross/blob/main/spirv_cross.hpp) C++ API,
//! with some inspiration from [naga](https://docs.rs/naga/latest/naga/index.html). A best effort has been
//! made to ensure that these bindings are sound, and that mutations occur strictly within Rust's
//! borrow rules.
//!
//! ## Strings
//! Methods on [`Compiler`] return and accept [`CompilerStr`] instead of a normal string type. A
//! [`CompilerStr`] may or may not be owned by the compiler, or may come from Rust. Rust string types
//! can be coerced automatically to [`CompilerStr`] as an input, and [`CompilerStr`] can easily be copied
//! to a Rust string type.
//!
//! If a returned [`CompilerStr`] is backed by immutable memory, it will have a `'static` lifetime.
//!
//! If instead the underlying string data could possibly be modified by `set_` functions,
//! they will only have a lifetime corresponding to the lifetime of the immutable borrow of the [`Compiler`]
//! that produced them. References to these short-lived strings can not be alive before calling a
//! mutating function.
//!
//! Strings will automatically allocate as needed when passed to FFI. Rust [`String`] and [`&str`](str)
//! may allocate to create a nul-terminated string. Strings coming from FFI will not reallocate,
//! and the pointer will be passed directly back. Rust [`&CStr`](std::ffi::CStr) will not reallocate.
//!
//! If you are just passing in a string constant using a [C-string literal](https://doc.rust-lang.org/edition-guide/rust-2021/c-string-literals.html)
//! will be the most efficient. Otherwise, it is always better to work with Rust [`String`] and [`&str`](str),
//! if you are dynamically building up a string. In particular, [`String`] will not reallocate if
//! there is enough capacity to append a nul byte before being passed to FFI.
//!
//! ## Handles
//! All reflected SPIR-V IDs are returned as [`Handle<T>`](handle::Handle), where the `u32` ID part can
//! be retrieved with [`Handle::id`](handle::Handle::id). Handles are tagged with the pointer of the
//! compiler instance they came from, and are required to ensure safety such that reflection queries
//! aren't made between different SPIR-V modules.
//!
//! Any function that takes or returns SPIR-V handles in the SPIRV-Cross API has been wrapped to accept
//! [`Handle<T>`](handle::Handle) in this crate.
//!
//! Handles can be unsafely forged with [`Compiler::create_handle`], but there are very few if any
//! situations where this would be needed.
//!
//! ## Features
//! By default, the `glsl`, `hlsl`, and `msl` features are enabled by default. The `cpp` and `json` targets can be enabled
//! in Cargo.toml
//!
//! ```toml
//! [dependencies]
//! spirv-cross2 = { features = ["cpp", "json"] }
//! ```
//!
//! SPIRV-Cross will only be built with support for enabled targets. If you want to only perform reflection and shrink the binary size,
//! you can disable all but the `None` target.
//!
//! ```toml
//! [dependencies]
//! spirv-cross2 = { default-features = false }
//! ```
//!
//! To enable all features, including `f16` and vector constant support, use the `full` feature.
//!
//! ```toml
//! [dependencies]
//! spirv-cross2 = { features = ["full"] }
//! ```
//!
//! ### `f16` and vector specialization constants support
//! When querying specialization constants, spirv-cross2 includes optional support for `f16` via [half](https://crates.io/crates/half) and vector and matrix types
//! via [glam](https://crates.io/crates/glam) and [gfx-maths](https://crates.io/crates/gfx-maths).
//!
//! ```toml
//! [dependencies]
//! spirv-cross2 = { features = ["f16", "gfx-maths-types", "glam-types"] }
//! ```
//!
//! ## Usage
//! Here is an example of using the API to do some reflection and compile to GLSL.
//!
//! ```
//! use spirv_cross2::compile::{CompilableTarget, CompiledArtifact};
//! use spirv_cross2::{Compiler, Module, SpirvCrossError};
//! use spirv_cross2::compile::glsl::GlslVersion;
//! use spirv_cross2::reflect::{DecorationValue, ResourceType};
//! use spirv_cross2::spirv;
//! use spirv_cross2::targets::Glsl;
//!
//! fn compile_spirv(words: &[u32]) -> Result<CompiledArtifact<Glsl>, SpirvCrossError> {
//! let module = Module::from_words(words);
//!
//! let mut compiler = Compiler::<Glsl>::new(module)?;
//!
//! let resources = compiler.shader_resources()?;
//!
//! for resource in resources.resources_for_type(ResourceType::SampledImage)? {
//! let Some(DecorationValue::Literal(set)) =
//! compiler.decoration(resource.id, spirv::Decoration::DescriptorSet)? else {
//! continue;
//! };
//! let Some(DecorationValue::Literal(binding)) =
//! compiler.decoration(resource.id, spirv::Decoration::Binding)? else {
//! continue;
//! };
//!
//! println!("Image {} at set = {}, binding = {}", resource.name, set, binding);
//!
//! // Modify the decoration to prepare it for GLSL.
//! compiler.set_decoration(resource.id, spirv::Decoration::DescriptorSet,
//! DecorationValue::unset())?;
//!
//! // Some arbitrary remapping if we want.
//! compiler.set_decoration(resource.id, spirv::Decoration::Binding,
//! Some(set * 16 + binding))?;
//! }
//!
//! let mut options = Glsl::options();
//! options.version = GlslVersion::Glsl300Es;
//!
//! compiler.compile(&options)
//! }
//! ```
//!
use spirv_cross_sys::{spvc_compiler_s, SpvId};
use crate::cell::{AllocationDropGuard, CrossAllocationCell};
use crate::sealed::{ContextRooted, Sealed};
use crate::targets::Target;
use std::marker::PhantomData;
use std::ptr::NonNull;
/// Compilation of SPIR-V to a textual format.
pub mod compile;
/// Handles to SPIR-V IDs from reflection.
pub mod handle;
/// SPIR-V reflection helpers and types.
pub mod reflect;
/// Compiler output targets.
pub mod targets;
/// Error handling traits and support.
mod error;
/// Cell helpers
mod cell;
/// String helpers
mod string;
/// Iteratator
mod iter;
/// SPIR-V types and definitions.
pub mod spirv {
pub use spirv::BuiltIn;
pub use spirv::Capability;
pub use spirv::Decoration;
pub use spirv::Dim;
pub use spirv::ExecutionMode;
pub use spirv::ExecutionModel;
pub use spirv::FPRoundingMode;
pub use spirv::ImageFormat;
pub use spirv::StorageClass;
}
pub(crate) mod sealed {
use spirv_cross_sys::spvc_context_s;
use std::ptr::NonNull;
pub trait Sealed {}
pub trait ContextRooted {
fn context(&self) -> NonNull<spvc_context_s>;
}
}
pub use crate::error::SpirvCrossError;
pub use crate::string::CompilerStr;
/// A SPIR-V Module represented as SPIR-V words.
pub struct Module<'a>(&'a [SpvId]);
impl<'a> Module<'a> {
/// Create a new `Module` from SPIR-V words.
pub fn from_words(words: &'a [u32]) -> Self {
Module(bytemuck::must_cast_slice(words))
}
}
/// Helper trait to detach objects with lifetimes attached to
/// a compiler or context.
pub trait ToStatic: Sealed {
/// The static type to return.
type Static<'a>
where
'a: 'static;
/// Clone the object into an instance with `'static` lifetime.
fn to_static(&self) -> Self::Static<'static>;
}
/// An instance of a SPIRV-Cross compiler.
///
/// Depending on the target, different methods will be
/// available.
///
/// Once compiled into a [`CompiledArtifact`](compile::CompiledArtifact),
/// reflection methods will still remain available, but the instance will be frozen,
/// and no more mutation will be available.
pub struct Compiler<T> {
pub(crate) ptr: NonNull<spvc_compiler_s>,
ctx: CrossAllocationCell,
_pd: PhantomData<T>,
}
impl<T: Target> Compiler<T> {
/// Create a compiler instance from a SPIR-V module.
pub fn new(spirv: Module) -> error::Result<Compiler<T>> {
let allocs = CrossAllocationCell::new()?;
allocs.into_compiler(spirv)
}
/// Create a new compiler instance.
///
/// The pointer to the `spvc_compiler_s` must have the same lifetime as the context root.
pub(crate) unsafe fn new_from_raw(
ptr: NonNull<spvc_compiler_s>,
ctx: CrossAllocationCell,
) -> Compiler<T> {
Compiler {
ptr,
ctx,
_pd: PhantomData,
}
}
}
/// Holds on to the pointer for a compiler instance,
/// but type erased.
///
/// This is used so that child resources of a compiler track the
/// lifetime of a compiler, or create handles attached with the
/// compiler instance, without needing to refer to the typed
/// output of a compiler.
///
/// The only thing a [`PhantomCompiler`] is able to do is create handles or
/// refer to the root context. It's lifetime should be the same as the lifetime
/// of the **context**, or **shorter**, but at least the lifetime of the compiler.
///
/// Anything that holds a PhantomCompiler effectively has static lifetime,
/// if and only if it points to an allocation that originates from the context.
///
/// Because it holds an `AllocationDropGuard`, the compiler instance will always be live.
#[derive(Clone)]
pub(crate) struct PhantomCompiler {
pub(crate) ptr: NonNull<spvc_compiler_s>,
ctx: AllocationDropGuard,
}
impl<T> Compiler<T> {
/// Create a type erased phantom for lifetime tracking purposes.
///
/// This function is unsafe because a [`PhantomCompiler`] can be used to
/// **safely** create handles originating from the compiler.
pub(crate) unsafe fn phantom(&self) -> PhantomCompiler {
PhantomCompiler {
ptr: self.ptr,
ctx: self.ctx.drop_guard(),
}
}
}
unsafe impl<T: Send> Send for Compiler<T> {}