1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! Riemann and Hurwitz zeta function.
use num_traits::ToPrimitive;

use crate::complex::FromComplex;
use crate::consts::*;
use crate::utils::*;

/// Calculate the Riemann zeta function, which is defined as
/// 
/// $$\zeta(s)=\sum_{k=1}^{\infty}\frac{1}{k^{s}}$$
/// 
/// for $\mathfrak{R}[s]>1$. 
/// 
/// And it has a unique analytic continuation to entire complex plane, 
/// excluding the point $s=1$.
/// 
/// Then, a globally convergent series for the Riemann zeta function is given by
/// 
/// $$\zeta(s)=\frac{1}{1-2^{1-s}}\sum_{n=0}^{\infty}\frac{1}{2^{n+1}}\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(k+1)^{1-s}$$
pub fn zeta<T: FromComplex>(s: T) -> T {
    let one = T::one();

    if s == one {
        return T::from_f64(INFINITY).unwrap();
    }

    let two = one + one;

    let mut akn = vec![one];
    let mut two_pow = one / two;
    let head = one / (one - pow_os(two, s));
    let mut tail_prev = T::zero();
    let mut tail = two_pow * akn[0];

    while (tail - tail_prev).abs().to_f64().unwrap() >= EPSILON {
        update_akn(&mut akn, s);
        two_pow /= two;
        tail_prev = tail;
        tail += two_pow * akn.iter().map(|&e| e).sum();
    }

    head * tail
}

fn update_akn<T: FromComplex>(akn: &mut Vec<T>, s: T) {
    let n = akn.len() - 1;

    let n1 = T::from_usize(n + 1).unwrap();
    let one = T::one();

    let _ = akn.iter_mut()
                .enumerate()
                .map(|(k, a)| {
                    let num = n1;
                    let den = T::from_usize(n + 1 - k).unwrap();
                    *a *= num / den;
                }).collect::<()>();
    let p1 = -T::one() / n1;
    let p2 = if s.im().to_f64().unwrap() < EPSILON {
        (n1 / (n1 + one)).powf(s.re())
    } else {
        T::from_complex((n1 / (n1 + one)).powc(T::complex(s.re(), s.im())))
    };
    akn.push(p1 * p2 * akn[n]);
}

/// Calculate the Hurwitz zeta function, which is defined as
/// 
/// $$\zeta(s, q)=\sum_{k=0}^{\infty}\frac{1}{(q+k)^{s}}$$
/// 
/// for $\mathfrak{R}[s]>1$, where any term with $q+k=0$ is excluded. 
/// 
/// And it has a unique analytic continuation to entire complex plane, 
/// excluding the point $s=1$, where any term with $q+k=0$ is excluded. 
/// 
/// Then, a globally convergent series for the Hurwitz zeta function is given by
/// 
/// $$\zeta(s, q)=\frac{1}{s-1}\sum_{n=0}^{\infty}\frac{1}{n+1}\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(q+k)^{1-s}\tag{1}$$
/// 
/// This function calculate formula (1) directly.
pub fn zetah_raw<T: FromComplex>(s: T, q: T) -> T {
    let one = T::one();
    let real = s.re().to_f64().unwrap();
    let imag = s.im().to_f64().unwrap();
    
    if s == one {
        return T::from_f64(INFINITY).unwrap();
    }
    if imag < EPSILON && real < 0.0 && real.floor() == real {
        return T::from_f64(INFINITY).unwrap();
    }

    let mut qkos = vec![pow_os(q, s)];
    let mut fact: Vec<T> = vec![one];
    let mut bk_inv = one;
    let head = one / (s - one);
    let mut tail_prev = T::zero();
    let mut tail = qkos[0] * fact[0] / bk_inv;
    let mut dt_prev = T::from_f64(INFINITY).unwrap();
    
    while (tail - tail_prev).abs().to_f64().unwrap() >= EPSILON {
        let n1 = T::from_usize(qkos.len()).unwrap();
        let _ = fact.iter_mut()
                    .enumerate()
                    .skip(1)
                    .map(|(k, a)| {
                        let n1k = n1 - T::from_usize(k).unwrap();
                        *a = *a / n1k * n1;
                    })
                    .collect::<()>();
        fact.push(one);
        if qkos.len() % 2 == 0 {
            qkos.push(pow_os(q + n1, s));
        } else {
            qkos.push(-pow_os(q + n1, s));
        }

        bk_inv += one;
        
        let dt = fact.iter().zip(qkos.iter()).map(|(&f, &q)| f * q).sum::<T>() / bk_inv;
        if dt_prev.abs() <= dt.abs() {
            break;
        }

        tail_prev = tail;
        dt_prev = dt;
        tail += dt;
    }

    head * tail
}

/// The Gregory's coefficients for calculating the Hurwitz zeta function.
const G_N: [f64; 19] = [
    1.0 / 2.0,
    -1.0 / 12.0,
    1.0 / 24.0,
    -19.0 / 720.0,
    3.0 / 160.0,
    -863.0 / 60480.0,
    275.0 / 24192.0,
    -33953.0 / 3628800.0,
    8183.0 / 1036800.0,
    -3250433.0 / 479001600.0,
    4671.0 / 788480.0,
    -13695779093.0 / 2615348736000.0,
    2224234463.0 / 475517952000.0,
    -132282840127.0 / 3138418432000.0,
    2639651053.0 / 689762304000.0,
    -111956703448001.0 / 32011868528640000.0,
    50188465.0 / 15613165568.0,
    -2334028946344463.0 / 786014494949376000.0,
    301124035185049.0 / 109285437800448000.0,
];

fn update_gn<T: FromComplex>(gn: &mut Vec<T>) {
    let one = T::one();
    let n = gn.len() + 1;
    let nt = T::from_usize(n).unwrap();
    let head = if n % 2 == 1 {
        one / (nt + one)
    } else {
        -one / (nt + one)
    };
    let mut tail = T::zero();
    let mut on = if n % 2 == 1 {
        one
    } else {
        -one
    };
    let mut den = nt + one;
    for &gk in gn.iter() {
        den -= one;
        on = -on;
        tail += on * gk / den;
    }
    
    gn.push(head + tail)
}

/// Calculate the Hurwitz zeta function using the Gregory's coefficient.
/// 
/// The Gregory's coefficient is defined either via their generating function
/// 
/// $$\frac{z}{\ln{(1+z)}}=1+\sum_{n=1}^{\infty}G_{n}z^{n},\quad|z|<1,$$
/// 
/// or explicitly via the recurrence relation
/// 
/// $$G_{n}=\frac{(-1)^{n-1}}{n+1}+\sum_{k=1}^{n-1}\frac{(-1)^{n+1-k}G_{k}}{n+1-k},\quad G_{1}=\frac{1}{2},\quad n=2,3,4,\ldots$$
/// 
/// Using this, the Hurwitz zeta function can be represented as
/// 
/// $$\zeta(s, q)=\frac{q^{1-s}}{s-1}+\sum_{n=0}^{\infty}|G_{n+1}|\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(q+k)^{-s}$$
/// 
/// This globally series can be calculated faster than formula (1) and has higher accuracy.
/// 
/// (Please refer to Blagouchine 2018 "Three notes on Ser's and Hasse's representations for the zeta-functions".)
/// 
/// When $q=1$, the Hurwitz zeta function is same as the Riemann zeta function.
pub fn zetah<T: FromComplex>(s: T, q: T) -> T {
    let one = T::one();
    let real = s.re().to_f64().unwrap();
    let imag = s.im().to_f64().unwrap();
    
    if s == one {
        return T::from_f64(INFINITY).unwrap();
    }
    if q == one {
        return zeta(s);
    }
    if imag < EPSILON && real < 0.0 && real.floor() == real {
        return T::from_f64(INFINITY).unwrap();
    }

    let mut qkms = vec![pow_ms(q, s)];
    let mut fact: Vec<T> = vec![one];
    let mut gn = G_N.iter().map(|&e| T::from_f64(e).unwrap()).collect::<Vec<T>>();
    let n_calc = gn.len();
    let head = pow_os(q, s) / (s - one);
    let mut tail_prev = T::zero();
    let mut tail = qkms[0] * fact[0] * gn[0];
    let mut dt_prev = T::from_f64(INFINITY).unwrap();
    
    let mut n = 0;
    while (tail - tail_prev).abs().to_f64().unwrap() >= EPSILON {
        n += 1;
        let nt = T::from_usize(n).unwrap();
        let _ = fact.iter_mut()
                    .enumerate()
                    .skip(1)
                    .map(|(k, a)| {
                        let n1k = nt - T::from_usize(k).unwrap();
                        *a = *a / n1k * nt;
                    })
                    .collect::<()>();
        fact.push(one);
        if n >= n_calc {
            update_gn(&mut gn);
        }
        if qkms.len() % 2 == 0 {
            qkms.push(pow_ms(q + nt, s));
        } else {
            qkms.push(-pow_ms(q + nt, s));
        }
        
        let dt = fact.iter().zip(qkms.iter()).map(|(&f, &q)| f * q).sum::<T>() * T::from_real(gn[n].abs());
        if dt_prev.abs() <= dt.abs() {
            break;
        }

        tail_prev = tail;
        dt_prev = dt;
        tail += dt;
    }

    head + tail
}