[[bench]]
harness = false
name = "bench_lasso"
path = "benches/bench_lasso.rs"
[dependencies.approx]
version = "0.4"
[dependencies.ndarray]
default-features = false
features = ["approx"]
version = "0.15"
[dependencies.ndarray-linalg]
optional = true
version = "0.14"
[dependencies.ndarray-stats]
version = "0.5.0"
[dependencies.num-traits]
version = "0.2"
[dependencies.rand]
features = ["small_rng"]
version = "0.8"
[dependencies.rand_distr]
version = "0.4.2"
[dependencies.thiserror]
version = "1.0"
[dev-dependencies.criterion]
version = "0.3"
[dev-dependencies.linfa]
version = "0.6.0"
[[example]]
name = "elastic_net"
path = "examples/elastic_net.rs"
[[example]]
name = "lasso"
path = "examples/lasso.rs"
[[example]]
name = "multi_task_lasso"
path = "examples/multi_task_lasso.rs"
[[example]]
name = "sparse_logistic_regression"
path = "examples/sparse_logistic_regression.rs"
[lib]
name = "sparseglm"
path = "src/lib.rs"
[package]
authors = ["Pierre-Antoine Bannier <pierreantoine.bannier@gmail.com>"]
autobenches = false
autobins = false
autoexamples = false
autotests = false
build = false
categories = ["science"]
description = "Fast memory-efficient solver for sparse generalized linear models"
edition = "2021"
exclude = ["/.github"]
keywords = ["machine", "learning", "data", "linear"]
license-file = "LICENSE"
name = "sparseglm"
readme = "README.md"
repository = "https://github.com/PABannier/sparseglm"
version = "0.1.0"