spacetimedb_expr/ty.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
use std::{
collections::HashMap,
fmt::{Display, Formatter},
ops::Deref,
};
use spacetimedb_lib::AlgebraicType;
use spacetimedb_primitives::TableId;
use spacetimedb_sats::algebraic_type::fmt::fmt_algebraic_type;
use spacetimedb_sql_parser::ast::BinOp;
use string_interner::{backend::StringBackend, symbol::SymbolU32, StringInterner};
use thiserror::Error;
use super::errors::{ExpectedRelation, InvalidOp};
/// When type checking a [super::expr::RelExpr],
/// types are stored in a typing context [TyCtx].
/// It will then hold references, in the form of [TyId]s,
/// to the types defined in the [TyCtx].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct TyId(u32);
impl TyId {
/// A static type id for Bool
pub const BOOL: Self = Self(0);
/// A static type id for I8
pub const I8: Self = Self(1);
/// A static type id for U8
pub const U8: Self = Self(2);
/// A static type id for I16
pub const I16: Self = Self(3);
/// A static type id for U16
pub const U16: Self = Self(4);
/// A static type id for I32
pub const I32: Self = Self(5);
/// A static type id for U32
pub const U32: Self = Self(6);
/// A static type id for I64
pub const I64: Self = Self(7);
/// A static type id for U64
pub const U64: Self = Self(8);
/// A static type id for I128
pub const I128: Self = Self(9);
/// A static type id for U128
pub const U128: Self = Self(10);
/// A static type id for I256
pub const I256: Self = Self(11);
/// A static type id for U256
pub const U256: Self = Self(12);
/// A static type id for F32
pub const F32: Self = Self(13);
/// A static type id for F64
pub const F64: Self = Self(14);
/// A static type id for String
pub const STR: Self = Self(15);
/// A static type id for a byte array
pub const BYTES: Self = Self(16);
/// A static type id for [AlgebraicType::identity()]
pub const IDENT: Self = Self(17);
/// The number of statically defined [TyId]s
const N: usize = 18;
}
impl Display for TyId {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
/// A symbol for names or identifiers in an expression tree
pub type Symbol = SymbolU32;
/// The type of a relation or scalar expression
#[derive(Debug)]
pub enum Type {
/// A base relation
Var(TableId, Box<[(Symbol, TyId)]>),
/// A derived relation
Row(Box<[(Symbol, TyId)]>),
/// A column type
Alg(AlgebraicType),
}
impl Type {
/// A constant for the primitive type Bool
pub const BOOL: Self = Self::Alg(AlgebraicType::Bool);
/// A constant for the primitive type I8
pub const I8: Self = Self::Alg(AlgebraicType::I8);
/// A constant for the primitive type U8
pub const U8: Self = Self::Alg(AlgebraicType::U8);
/// A constant for the primitive type I16
pub const I16: Self = Self::Alg(AlgebraicType::I16);
/// A constant for the primitive type U16
pub const U16: Self = Self::Alg(AlgebraicType::U16);
/// A constant for the primitive type I32
pub const I32: Self = Self::Alg(AlgebraicType::I32);
/// A constant for the primitive type U32
pub const U32: Self = Self::Alg(AlgebraicType::U32);
/// A constant for the primitive type I64
pub const I64: Self = Self::Alg(AlgebraicType::I64);
/// A constant for the primitive type U64
pub const U64: Self = Self::Alg(AlgebraicType::U64);
/// A constant for the primitive type I128
pub const I128: Self = Self::Alg(AlgebraicType::I128);
/// A constant for the primitive type U128
pub const U128: Self = Self::Alg(AlgebraicType::U128);
/// A constant for the primitive type I256
pub const I256: Self = Self::Alg(AlgebraicType::I256);
/// A constant for the primitive type U256
pub const U256: Self = Self::Alg(AlgebraicType::U256);
/// A constant for the primitive type F32
pub const F32: Self = Self::Alg(AlgebraicType::F32);
/// A constant for the primitive type F64
pub const F64: Self = Self::Alg(AlgebraicType::F64);
/// A constant for the primitive type String
pub const STR: Self = Self::Alg(AlgebraicType::String);
/// Is this type compatible with this binary operator?
pub fn is_compatible_with(&self, op: BinOp) -> bool {
match (op, self) {
(BinOp::And | BinOp::Or, Type::Alg(AlgebraicType::Bool)) => true,
(BinOp::And | BinOp::Or, _) => false,
(BinOp::Eq | BinOp::Ne | BinOp::Lt | BinOp::Gt | BinOp::Lte | BinOp::Gte, Type::Alg(t)) => {
t.is_bool()
|| t.is_integer()
|| t.is_float()
|| t.is_string()
|| t.is_bytes()
|| t.is_identity()
|| t.is_address()
}
(BinOp::Eq | BinOp::Ne | BinOp::Lt | BinOp::Gt | BinOp::Lte | BinOp::Gte, _) => false,
}
}
}
/// When type checking a [super::expr::RelExpr],
/// types are stored in a typing context [TyCtx].
/// It will then hold references, in the form of [TyId]s,
/// to the types defined in the [TyCtx].
#[derive(Debug)]
pub struct TyCtx {
/// A statically interned byte array type
bytes: Type,
/// A statically interned identity type
ident: Type,
/// Types that are interned dynamically during type checking
types: Vec<Type>,
/// Interned identifiers
names: StringInterner<StringBackend>,
}
impl Default for TyCtx {
fn default() -> Self {
Self {
// Pre-intern the byte array type
bytes: Type::Alg(AlgebraicType::bytes()),
// Pre-intern the identity type
ident: Type::Alg(AlgebraicType::identity()),
// All other composite types are interned on the fly
types: vec![],
// Intern identifiers on the fly
names: StringInterner::new(),
}
}
}
#[derive(Debug, Error)]
#[error("Invalid type id {0}")]
pub struct InvalidTypeId(TyId);
impl TyCtx {
/// Return a wrapped [Type::BOOL]
pub fn bool(&self) -> TypeWithCtx {
TypeWithCtx(&Type::BOOL, self)
}
/// Return a wrapped [Type::I8]
pub fn i8(&self) -> TypeWithCtx {
TypeWithCtx(&Type::I8, self)
}
/// Return a wrapped [Type::U8]
pub fn u8(&self) -> TypeWithCtx {
TypeWithCtx(&Type::U8, self)
}
/// Return a wrapped [Type::I16]
pub fn i16(&self) -> TypeWithCtx {
TypeWithCtx(&Type::I16, self)
}
/// Return a wrapped [Type::U16]
pub fn u16(&self) -> TypeWithCtx {
TypeWithCtx(&Type::U16, self)
}
/// Return a wrapped [Type::I32]
pub fn i32(&self) -> TypeWithCtx {
TypeWithCtx(&Type::I32, self)
}
/// Return a wrapped [Type::U32]
pub fn u32(&self) -> TypeWithCtx {
TypeWithCtx(&Type::U32, self)
}
/// Return a wrapped [Type::I64]
pub fn i64(&self) -> TypeWithCtx {
TypeWithCtx(&Type::I64, self)
}
/// Return a wrapped [Type::U64]
pub fn u64(&self) -> TypeWithCtx {
TypeWithCtx(&Type::U64, self)
}
/// Return a wrapped [Type::I128]
pub fn i128(&self) -> TypeWithCtx {
TypeWithCtx(&Type::I128, self)
}
/// Return a wrapped [Type::U128]
pub fn u128(&self) -> TypeWithCtx {
TypeWithCtx(&Type::U128, self)
}
/// Return a wrapped [Type::I256]
pub fn i256(&self) -> TypeWithCtx {
TypeWithCtx(&Type::I256, self)
}
/// Return a wrapped [Type::U256]
pub fn u256(&self) -> TypeWithCtx {
TypeWithCtx(&Type::U256, self)
}
/// Return a wrapped [Type::F32]
pub fn f32(&self) -> TypeWithCtx {
TypeWithCtx(&Type::F32, self)
}
/// Return a wrapped [Type::F64]
pub fn f64(&self) -> TypeWithCtx {
TypeWithCtx(&Type::F64, self)
}
/// Return a wrapped [Type::STR]
pub fn str(&self) -> TypeWithCtx {
TypeWithCtx(&Type::STR, self)
}
/// Return a wrapped [AlgebraicType::bytes()]
pub fn bytes(&self) -> TypeWithCtx {
TypeWithCtx(&self.bytes, self)
}
/// Return a wrapped [AlgebraicType::identity()]
pub fn ident(&self) -> TypeWithCtx {
TypeWithCtx(&self.ident, self)
}
/// Try to resolve an id to its [Type].
/// Return a resolution error if not found.
pub fn try_resolve(&self, id: TyId) -> Result<TypeWithCtx, InvalidTypeId> {
match id {
TyId::BOOL => {
// Resolve the primitive type Bool
Ok(self.bool())
}
TyId::I8 => {
// Resolve the primitive type I8
Ok(self.i8())
}
TyId::U8 => {
// Resolve the primitive type U8
Ok(self.u8())
}
TyId::I16 => {
// Resolve the primitive type I16
Ok(self.i16())
}
TyId::U16 => {
// Resolve the primitive type U16
Ok(self.u16())
}
TyId::I32 => {
// Resolve the primitive type I32
Ok(self.i32())
}
TyId::U32 => {
// Resolve the primitive type U32
Ok(self.u32())
}
TyId::I64 => {
// Resolve the primitive type I64
Ok(self.i64())
}
TyId::U64 => {
// Resolve the primitive type U64
Ok(self.u64())
}
TyId::I128 => {
// Resolve the primitive type I128
Ok(self.i128())
}
TyId::U128 => {
// Resolve the primitive type U128
Ok(self.u128())
}
TyId::I256 => {
// Resolve the primitive type I256
Ok(self.i256())
}
TyId::U256 => {
// Resolve the primitive type U256
Ok(self.u256())
}
TyId::F32 => {
// Resolve the primitive type F32
Ok(self.f32())
}
TyId::F64 => {
// Resolve the primitive type F64
Ok(self.f64())
}
TyId::STR => {
// Resolve the primitive type String
Ok(self.str())
}
TyId::BYTES => {
// Resolve the byte array type
Ok(self.bytes())
}
TyId::IDENT => {
// Resolve the special identity type
Ok(self.ident())
}
_ => self
.types
.get(id.0 as usize - TyId::N)
.map(|ty| TypeWithCtx(ty, self))
.ok_or(InvalidTypeId(id)),
}
}
/// Resolve a [Symbol] to its name
pub fn resolve_symbol(&self, id: Symbol) -> Option<&str> {
self.names.resolve(id)
}
/// Add an [AlgebraicType] to the context and return a [TyId] for it.
/// The [TyId] is not guaranteed to be unique to the type.
/// However for primitive types it will be.
pub fn add_algebraic_type(&mut self, ty: &AlgebraicType) -> TyId {
match ty {
AlgebraicType::Bool => {
// Bool -> BOOL
TyId::BOOL
}
AlgebraicType::I8 => {
// I8 -> I8
TyId::I8
}
AlgebraicType::U8 => {
// U8 -> U8
TyId::U8
}
AlgebraicType::I16 => {
// I16 -> I16
TyId::I16
}
AlgebraicType::U16 => {
// U16 -> U16
TyId::U16
}
AlgebraicType::I32 => {
// I32 -> I32
TyId::I32
}
AlgebraicType::U32 => {
// U32 -> U32
TyId::U32
}
AlgebraicType::I64 => {
// I64 -> I64
TyId::I64
}
AlgebraicType::U64 => {
// U64 -> U64
TyId::U64
}
AlgebraicType::I128 => {
// I128 -> I128
TyId::I128
}
AlgebraicType::U128 => {
// U128 -> U128
TyId::U128
}
AlgebraicType::I256 => {
// I256 -> I256
TyId::I256
}
AlgebraicType::U256 => {
// U256 -> U256
TyId::U256
}
AlgebraicType::F32 => {
// F32 -> F32
TyId::F32
}
AlgebraicType::F64 => {
// F64 -> F64
TyId::F64
}
AlgebraicType::String => {
// String -> STR
TyId::STR
}
AlgebraicType::Array(ty) if ty.elem_ty.is_u8() => {
// [u8] -> BYTES
TyId::BYTES
}
AlgebraicType::Product(ty) if ty.is_identity() => {
// { __identity_bytes: [u8] } -> IDENT
TyId::IDENT
}
_ => {
let n = self.types.len() + TyId::N;
self.types.push(Type::Alg(ty.clone()));
TyId(n as u32)
}
}
}
/// Add a relvar or table type to the context and return a [TyId] for it.
/// The [TyId] is not guaranteed to be unique to the type.
pub fn add_var_type(&mut self, table_id: TableId, fields: Vec<(Symbol, TyId)>) -> TyId {
let n = self.types.len() + TyId::N;
self.types.push(Type::Var(table_id, fields.into_boxed_slice()));
TyId(n as u32)
}
/// Add a derived row type to the context and return a [TyId] for it.
/// The [TyId] is not guaranteed to be unique to the type.
pub fn add_row_type(&mut self, fields: Vec<(Symbol, TyId)>) -> TyId {
let n = self.types.len() + TyId::N;
self.types.push(Type::Row(fields.into_boxed_slice()));
TyId(n as u32)
}
/// Generate a [Symbol] from a string
pub fn gen_symbol(&mut self, name: impl AsRef<str>) -> Symbol {
self.names.get_or_intern(name)
}
/// Get an already generated [Symbol]
pub fn get_symbol(&self, name: impl AsRef<str>) -> Option<Symbol> {
self.names.get(name)
}
/// Are these types structurally equivalent?
pub fn eq(&self, a: TyId, b: TyId) -> Result<bool, InvalidTypeId> {
if a.0 < TyId::N as u32 || b.0 < TyId::N as u32 {
return Ok(a == b);
}
match (&*self.try_resolve(a)?, &*self.try_resolve(b)?) {
(Type::Alg(a), Type::Alg(b)) => Ok(a == b),
(Type::Var(a, _), Type::Var(b, _)) => Ok(a == b),
(Type::Row(a), Type::Row(b)) => Ok(a.len() == b.len() && {
for (i, (name, id)) in a.iter().enumerate() {
if name != &b[i].0 || !self.eq(*id, b[i].1)? {
return Ok(false);
}
}
true
}),
_ => Ok(false),
}
}
}
/// A type wrapped with its typing context
#[derive(Debug)]
pub struct TypeWithCtx<'a>(&'a Type, &'a TyCtx);
impl Deref for TypeWithCtx<'_> {
type Target = Type;
fn deref(&self) -> &Self::Target {
self.0
}
}
impl TypeWithCtx<'_> {
/// Expect a type compatible with this binary operator
pub fn expect_op(&self, op: BinOp) -> Result<(), InvalidOp> {
if self.0.is_compatible_with(op) {
return Ok(());
}
Err(InvalidOp::new(op, self))
}
/// Expect a relvar or base relation type
pub fn expect_relvar(&self) -> Result<RelType, ExpectedRelvar> {
match self.0 {
Type::Var(_, fields) => Ok(RelType { fields }),
Type::Row(_) | Type::Alg(_) => Err(ExpectedRelvar),
}
}
/// Expect a scalar or column type, not a relation type
pub fn expect_scalar(&self) -> Result<&AlgebraicType, ExpectedScalar> {
match self.0 {
Type::Alg(t) => Ok(t),
Type::Var(..) | Type::Row(..) => Err(ExpectedScalar),
}
}
/// Expect a relation, not a scalar or column type
pub fn expect_relation(&self) -> Result<RelType, ExpectedRelation> {
match self.0 {
Type::Var(_, fields) | Type::Row(fields) => Ok(RelType { fields }),
Type::Alg(_) => Err(ExpectedRelation::new(self)),
}
}
}
/// The error type of [TypeWithCtx::expect_relvar()]
pub struct ExpectedRelvar;
/// The error type of [TypeWithCtx::expect_scalar()]
pub struct ExpectedScalar;
impl<'a> Display for TypeWithCtx<'a> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self.0 {
Type::Alg(ty) => write!(f, "{}", fmt_algebraic_type(ty)),
Type::Var(_, fields) | Type::Row(fields) => {
const UNKNOWN: &str = "UNKNOWN";
write!(f, "(")?;
let (symbol, id) = &fields[0];
let name = self.1.resolve_symbol(*symbol).unwrap_or(UNKNOWN);
match self.1.try_resolve(*id) {
Ok(ty) => {
write!(f, "{}: {}", name, ty)?;
}
Err(_) => {
write!(f, "{}: {}", name, UNKNOWN)?;
}
};
for (symbol, id) in &fields[1..] {
let name = self.1.resolve_symbol(*symbol).unwrap_or(UNKNOWN);
match self.1.try_resolve(*id) {
Ok(ty) => {
write!(f, "{}: {}", name, ty)?;
}
Err(_) => {
write!(f, "{}: {}", name, UNKNOWN)?;
}
};
}
write!(f, ")")
}
}
}
}
/// Represents a non-scalar or column type
#[derive(Debug)]
pub struct RelType<'a> {
fields: &'a [(Symbol, TyId)],
}
impl<'a> RelType<'a> {
/// Returns an iterator over the field names and types of this row type
pub fn iter(&'a self) -> impl Iterator<Item = (usize, Symbol, TyId)> + '_ {
self.fields.iter().enumerate().map(|(i, (name, ty))| (i, *name, *ty))
}
/// Find the position and type of a field in this row type if it exists
pub fn find(&'a self, name: Symbol) -> Option<(usize, TyId)> {
self.iter()
.find(|(_, field, _)| *field == name)
.map(|(i, _, ty)| (i, ty))
}
}
/// A typing environment for an expression.
/// It binds in scope variables to their respective types.
#[derive(Debug, Clone, Default)]
pub struct TyEnv(HashMap<Symbol, TyId>);
impl TyEnv {
/// Adds a new variable binding to the environment.
/// Returns the old binding if the name was already in scope.
pub fn add(&mut self, name: Symbol, ty: TyId) -> Option<TyId> {
self.0.insert(name, ty)
}
/// Find a name in the environment
pub fn find(&self, name: Symbol) -> Option<TyId> {
self.0.get(&name).copied()
}
}