1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
use std::ops::Mul;

/// Measure of the cardinality (#) of a vector space.
///
/// `Card` is typically used to compute the number of possible values that can
/// be reached within some vector space. For example, for a space with 2
/// dimensions, each with a finite set of values, we have:
///
/// ```
/// use spaces::{PairSpace, Space, Card};
/// use spaces::dimensions::Discrete;
///
/// let d1 = Discrete::new(5);
/// let d2 = Discrete::new(10);
/// let space = PairSpace::new(d1, d2);
///
/// assert_eq!(space.card(), Card::Finite(50));
/// ```
///
/// Internally, this above code does the following:
///
/// ```
/// use spaces::Card;
///
/// let s1 = Card::Finite(5);
/// let s2 = Card::Finite(10);
///
/// assert_eq!(s1*s2, Card::Finite(50));
/// ```
#[derive(Clone, Copy, Serialize, Deserialize, Debug, PartialEq, Eq)]
pub enum Card {
    Null,
    Finite(usize),
    Infinite,
}

impl Mul for Card {
    type Output = Card;

    fn mul(self, rhs: Card) -> Card {
        match self {
            Card::Null => rhs,
            Card::Infinite => self,
            Card::Finite(ls) => match rhs {
                Card::Null => self,
                Card::Infinite => rhs,
                Card::Finite(rs) => Card::Finite(ls * rs),
            },
        }
    }
}

impl Into<usize> for Card {
    fn into(self) -> usize {
        match self {
            Card::Finite(e) => e,
            _ => panic!("Card type has no integer representation."),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Card;

    #[test]
    fn test_equality() {
        assert_eq!(Card::Null, Card::Null);
        assert_eq!(Card::Infinite, Card::Infinite);

        assert_eq!(Card::Finite(1), Card::Finite(1));
        assert_eq!(Card::Finite(5), Card::Finite(5));
        assert_eq!(Card::Finite(10), Card::Finite(10));
    }

    #[test]
    fn test_inequality() {
        assert_ne!(Card::Null, Card::Infinite);
        assert_ne!(Card::Null, Card::Finite(1));

        assert_ne!(Card::Infinite, Card::Null);
        assert_ne!(Card::Infinite, Card::Finite(1));

        assert_ne!(Card::Finite(1), Card::Null);
        assert_ne!(Card::Finite(1), Card::Infinite);
        assert_ne!(Card::Finite(1), Card::Finite(10));
    }

    #[test]
    fn test_mul() {
        assert_eq!(Card::Null * Card::Null, Card::Null);
        assert_eq!(Card::Infinite * Card::Infinite, Card::Infinite);

        assert_eq!(Card::Null * Card::Infinite, Card::Infinite);
        assert_eq!(Card::Infinite * Card::Null, Card::Infinite);

        assert_eq!(Card::Finite(1) * Card::Infinite, Card::Infinite);
        assert_eq!(Card::Finite(5) * Card::Infinite, Card::Infinite);

        assert_eq!(Card::Finite(1) * Card::Finite(1), Card::Finite(1));
        assert_eq!(Card::Finite(1) * Card::Finite(5), Card::Finite(5));
        assert_eq!(Card::Finite(5) * Card::Finite(1), Card::Finite(5));
        assert_eq!(Card::Finite(5) * Card::Finite(5), Card::Finite(25));
    }

    #[test]
    #[should_panic]
    fn test_into_null() {
        let s = Card::Null;
        let _: usize = s.into();
    }

    #[test]
    #[should_panic]
    fn test_into_infinite() {
        let s = Card::Infinite;
        let _: usize = s.into();
    }

    #[test]
    fn test_into_finite() {
        for i in vec![1, 5, 10] {
            let d = Card::Finite(i);
            let v: usize = d.into();

            assert_eq!(v, i);
        }
    }
}