1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//! # space-search
//!
//! A library providing basic generic depth-first, breadth-first, heuristic-guided, and A* based search space exploration algorithms.
//!
//! Implement [`Searchable`] + [`SolutionIdentifiable`] to perform breadth-first or depth-first searching. Implement [`Scoreable`] as well to perform heuristically guided search space exploration. Finally, additionally implement [`CostSearchable`] to perform A* based search exploration. Pass them to [`Searcher`] to create an iterator that will search for a solution.
//!
//! [`Searcher`] requires that you specify a `Manager` type that determines the strategy, return result, and optimization of the search algorithm. Choose one of the searchers defined in the hierarchy of the [`search`] module to fit your individual needs.
//!
//! * Implement [`Scoreable`] to utilize the `guided` search strategy based managers, which will prioritize searching states with a lower associated score first. Additionally, implement [`CostSearchable`] to make use of the A* based search managers in the `a_star` module. If implementing [`Scoreable`] is too complex or unnecessary for your use case, then you may use the `unguided` search managers, which explore the space naively in a depth-first or breadth-first manner, toggleable by a flag on the manager itself.
//! * Use a `route` based manager to yield results consisting of the sequence of steps taken from the starting state to the ending state. Use a `no_route` manager to just yield the solution state alone. Route based managers require that your state type implement [`Clone`].
//! * Implement [`Eq`] + [`std::hash::Hash`] + [`Clone`] for your [`Searchable`] type to benefit from prior explored state checking optimization using a `hashable` manager; if youre unable to, then use an `unhashable` manager, which does not require these additional bounds, but will likely explore the space much less efficiently unless cyclic traversal is not an inherent property of your search space.
//!
//! When implementing [`Scoreable`], make sure that lower scoring states are closer to a solution.
//!
//! ```
//! use space_search::*;
//! use std::{vec, hash::Hash};
//!
//! #[derive(Clone, Debug, PartialEq, Eq, Hash)]
//! struct Pos(i32, i32);
//!
//! impl Searchable for Pos {
//!     fn next_states(&self) -> impl Iterator<Item = Self> {
//!         let &Pos(x, y) = self;
//!         [
//!             Pos(x - 1, y),
//!             Pos(x, y - 1),
//!             Pos(x + 1, y),
//!             Pos(x, y + 1),
//!         ].into_iter()
//!     }
//! }
//!
//! impl SolutionIdentifiable for Pos {
//!     fn is_solution(&self) -> bool {
//!         let &Pos(x, y) = self;
//!         x == 5 && y == 5
//!     }
//! }
//!
//! let mut searcher: Searcher<search::unguided::no_route::hashable::Manager<_>, _> = Searcher::new(Pos(0, 0));
//! assert_eq!(searcher.next(), Some(Pos(5, 5)));
//! ```

use std::{collections::VecDeque, marker::PhantomData};

pub mod search;

/// Basic trait for depth-first and breadth-first search space exploration.
///
/// Implement this + [`SolutionIdentifiable`] for your state type to perform search-space exploration.
pub trait Searchable: Sized {
    /// Yield all adjacent explorable states reachable from this state.
    fn next_states(&self) -> impl Iterator<Item = Self>;
}

/// Trait that allows a state to be identified as a solution.
///
/// Implement this + [`Searchable`] for your state type to perform search-space exploration.
pub trait SolutionIdentifiable {
    /// Return `true` if this state is a solution state.
    fn is_solution(&self) -> bool;
}

/// Trait for search space exploration guided by a heuristic.
///
/// Implement this + [`Searchable`] + [`SolutionIdentifiable`] to perform heuristically-guided search-space exploration.
///
/// New states are explored in the order of
/// lowest-scoring first, biasing the search exploration in the direction of a solution. Ensure the scores
/// returned by [`Scoreable::score`] are decreasing with the proximity to a solution.
pub trait Scoreable {
    /// Type used to represent a state's score.
    /// Common types can be [`i32`], [`usize`], an ordered float type, or your own type implementing [`Ord`].
    type Score: Ord;

    /// Score function used for heuristic exploration. New states are explored in the order of
    /// lowest-scoring first; ensure the scores
    /// returned by this function decrease with the proximity to a solution.
    fn score(&self) -> Self::Score;
}

/// Trait for search space exploration guided by a cost function & heuristic.
///
/// Implement this + [`Scoreable`] + [`SolutionIdentifiable`] to perform A* guided search-space exploration.
///
/// [`Searchable`] is automatically implemented if this trait is implemented.
pub trait CostSearchable: Scoreable + Sized {
    /// Yield all adjacent explorable states reachable from this state, paired with the associated cost
    /// of traversing from the current state each new state.
    fn next_states_with_costs(&self) -> impl Iterator<Item = (Self, Self::Score)>;
}

// this doesnt work unfortunately :(
// we can only have one blanket impl or the other

// /// Marker trait to auto-implement [`CostSearchable`] for any type that already implements [`Scoreable`] + [`Searchable`]; the cost
// /// is assumed to be 1 for all states returned by [`Searchable::next_states`].
// pub trait CostSearchableForSearchable {}

// impl<T> CostSearchable for T
// where
//     T: Scoreable + Searchable + CostSearchableForSearchable,
//     T::Score: One,
// {
//     fn next_states_with_costs(&self) -> impl Iterator<Item = (Self, Self::Score)> {
//         self.next_states().map(|s| (s, T::Score::one()))
//     }
// }

impl<T> Searchable for T
where
    T: CostSearchable,
{
    fn next_states(&self) -> impl Iterator<Item = Self> {
        self.next_states_with_costs().map(|(s, _)| s)
    }
}

/// Internal.
///
/// Used to represent states paired with their scores in guided exploration managers.
struct OrderedSearchable<T, C> {
    state: T,
    score: C,
}

impl<S> From<S> for OrderedSearchable<S, S::Score>
where
    S: Scoreable,
{
    fn from(state: S) -> Self {
        let score = state.score();
        OrderedSearchable { state, score }
    }
}

impl<S> From<StateParent<S>> for OrderedSearchable<StateParent<S>, S::Score>
where
    S: Scoreable,
{
    fn from(pair: StateParent<S>) -> Self {
        let score = pair.state.score();
        OrderedSearchable { state: pair, score }
    }
}

impl<T, C> PartialEq for OrderedSearchable<T, C>
where
    C: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.score == other.score
    }
}

impl<T, C> Eq for OrderedSearchable<T, C> where C: Eq {}

impl<T, C> PartialOrd for OrderedSearchable<T, C>
where
    C: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        other.score.partial_cmp(&self.score)
    }
}

impl<T, C> Ord for OrderedSearchable<T, C>
where
    C: Ord,
{
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        other.score.cmp(&self.score)
    }
}

/// Internal.
///
/// Used to represent states with no additional context in solution-only yielding managers.
pub struct NoContext<S>(S);

impl<S> AsRef<S> for NoContext<S> {
    fn as_ref(&self) -> &S {
        &self.0
    }
}

/// Internal.
///
/// Used to represent states with the added context of their parent state
/// in solution-route yielding managers.
#[derive(Clone)]
pub struct StateParent<S> {
    state: S,
    parent: Option<usize>,
}

impl<S> AsRef<S> for StateParent<S> {
    fn as_ref(&self) -> &S {
        &self.state
    }
}

/// Internal.
///
/// Used to represent states with the added context of their
/// cumulative rolling cost for A* based managers.
pub struct StateCumulativeCost<S, C> {
    state: S,
    cumulative_cost: C,
}

impl<S, C> AsRef<S> for StateCumulativeCost<S, C> {
    fn as_ref(&self) -> &S {
        &self.state
    }
}

/// Internal.
///
/// Used to represent states with the added context of their parent state &
/// cumulative rolling cost for A* based solution route-yielding managers.
#[derive(Clone)]
pub struct StateParentCumulativeCost<S, C> {
    state: S,
    parent: Option<usize>,
    cumulative_cost: C,
}

impl<S, C> AsRef<S> for StateParentCumulativeCost<S, C> {
    fn as_ref(&self) -> &S {
        &self.state
    }
}

impl<S, C> From<StateParentCumulativeCost<S, C>> for StateParent<S> {
    fn from(
        StateParentCumulativeCost { state, parent, .. }: StateParentCumulativeCost<S, C>,
    ) -> Self {
        StateParent { state, parent }
    }
}

/// Internal.
///
/// Trait abstracting all exploration managers' common functionality.
pub trait ExplorationManager<S> {
    type YieldResult;
    type FringeItem: AsRef<S>;
    type CurrentStateContext;
    type NextStatesIterItem;

    fn initialize(initial_state: S) -> Self;
    fn pop_state(&mut self) -> Option<Self::FringeItem>;
    fn prepare_result_from(&self, item: Self::FringeItem) -> Self::YieldResult;
    fn valid_state(&mut self, item: &Self::FringeItem) -> bool;
    fn place_state(&mut self, item: Self::FringeItem);
    fn register_current_state(&mut self, item: &Self::FringeItem) -> Self::CurrentStateContext;
    fn prepare_state(
        &self,
        context: &Self::CurrentStateContext,
        state: Self::NextStatesIterItem,
    ) -> Self::FringeItem;
    fn next_states_iter(current_state: &S) -> impl Iterator<Item = Self::NextStatesIterItem>;
}

/// State space exploration iterator.
///
/// Create an instance of this to explore a search space.
pub struct Searcher<M, S> {
    pub manager: M,
    _marker: PhantomData<S>,
}

impl<M, S> Searcher<M, S> {
    /// Create a new search iterator from an initial state.
    pub fn new(initial_state: S) -> Self
    where
        M: ExplorationManager<S>,
    {
        Self {
            manager: M::initialize(initial_state),
            _marker: PhantomData,
        }
    }

    /// Create a new search iterator from a default initial state.
    pub fn new_with_default() -> Self
    where
        S: Default,
        M: ExplorationManager<S>,
    {
        Self::new(Default::default())
    }
}

impl<M, S> Iterator for Searcher<M, S>
where
    M: ExplorationManager<S>,
    S: SolutionIdentifiable,
{
    type Item = M::YieldResult;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let current_state = self.manager.pop_state()?;

            if current_state.as_ref().is_solution() {
                return Some(self.manager.prepare_result_from(current_state));
            }

            let context = self.manager.register_current_state(&current_state);

            for item in M::next_states_iter(current_state.as_ref()) {
                let new_item = self.manager.prepare_state(&context, item);
                if self.manager.valid_state(&new_item) {
                    self.manager.place_state(new_item);
                }
            }
        }
    }
}

fn prepare_result_from_state_parent_map<S>(
    parents: &Vec<StateParent<S>>,
    StateParent {
        mut state,
        parent: mut maybe_parent_index,
    }: StateParent<S>,
) -> Vec<S>
where
    S: Clone,
{
    let mut result = VecDeque::new();
    while let Some(parent_index) = maybe_parent_index {
        result.push_front(state);
        let StateParent {
            state: new_state,
            parent: new_parent_index,
        } = parents
            .get(parent_index)
            .expect("Parent state will always exist if parent index exists")
            .clone();
        state = new_state;
        maybe_parent_index = new_parent_index;
    }
    result.push_front(state);
    result.into()
}