1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
use crate::{
  hasher::Digest,
  Error,
};
use core::{
  convert::{
    TryFrom,
    TryInto,
  },
  fmt::Debug,
};

#[cfg(feature = "serde-codec")]
use serde_big_array::BigArray;

use bytecursor::ByteCursor;
use sp_std::vec::Vec;
use unsigned_varint::{
  decode,
  encode as varint_encode,
};

/// Trait that implements hashing.
///
/// It is usually implemented by a custom code table enum that derives the
/// [`Multihash` derive].
///
/// [`Multihash` derive]: crate::derive
pub trait MultihashDigest<const S: usize>:
  TryFrom<u64> + Into<u64> + Send + Sync + Unpin + Copy + Eq + Debug + 'static {
  /// Calculate the hash of some input data.
  ///
  /// # Example
  ///
  /// ```
  /// // `Code` implements `MultihashDigest`
  /// use sp_multihash::{
  ///   Code,
  ///   MultihashDigest,
  /// };
  ///
  /// let hash = Code::Sha3_256.digest(b"Hello world!");
  /// println!("{:02x?}", hash);
  /// ```
  fn digest(&self, input: &[u8]) -> Multihash<S>;

  /// Create a multihash from an existing [`Digest`].
  ///
  /// # Example
  ///
  /// ```
  /// use sp_multihash::{
  ///   Code,
  ///   MultihashDigest,
  ///   Sha3_256,
  ///   StatefulHasher,
  /// };
  ///
  /// let mut hasher = Sha3_256::default();
  /// hasher.update(b"Hello world!");
  /// let hash = Code::multihash_from_digest(&hasher.finalize());
  /// println!("{:02x?}", hash);
  /// ```
  #[allow(clippy::needless_lifetimes)]
  fn multihash_from_digest<'a, D, const DIGEST_SIZE: usize>(
    digest: &'a D,
  ) -> Multihash<S>
  where
    D: Digest<DIGEST_SIZE>,
    Self: From<&'a D>;
}

/// A Multihash instance that only supports the basic functionality and no
/// hashing.
///
/// With this Multihash implementation you can operate on Multihashes in a
/// generic way, but no hasher implementation is associated with the code.
///
/// # Example
///
/// ```
/// use sp_multihash::Multihash;
///
/// const Sha3_256: u64 = 0x16;
/// let digest_bytes = [
///   0x16, 0x20, 0x64, 0x4b, 0xcc, 0x7e, 0x56, 0x43, 0x73, 0x04, 0x09, 0x99,
///   0xaa, 0xc8, 0x9e, 0x76, 0x22, 0xf3, 0xca, 0x71, 0xfb, 0xa1, 0xd9, 0x72,
///   0xfd, 0x94, 0xa3, 0x1c, 0x3b, 0xfb, 0xf2, 0x4e, 0x39, 0x38,
/// ];
/// let mh = Multihash::from_bytes(&digest_bytes).unwrap();
/// assert_eq!(mh.code(), Sha3_256);
/// assert_eq!(mh.size(), 32);
/// assert_eq!(mh.digest(), &digest_bytes[2..]);
/// ```
#[cfg_attr(feature = "serde-codec", derive(serde::Deserialize))]
#[cfg_attr(feature = "serde-codec", derive(serde::Serialize))]
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub struct Multihash<const S: usize> {
  /// The code of the Multihash.
  code: u64,
  /// The actual size of the digest in bytes (not the allocated size).
  size: u8,
  /// The digest.
  #[cfg_attr(feature = "serde-codec", serde(with = "BigArray"))]
  digest: [u8; S],
}

impl<const S: usize> Default for Multihash<S> {
  fn default() -> Self { Self { code: 0, size: 0, digest: [0; S] } }
}

impl<const S: usize> Multihash<S> {
  /// Wraps the digest in a multihash.
  pub fn wrap(code: u64, input_digest: &[u8]) -> Result<Self, Error> {
    if input_digest.len() > S {
      return Err(Error::InvalidSize(input_digest.len() as _));
    }
    let size = input_digest.len();
    let mut digest = [0; S];
    digest[..size].copy_from_slice(input_digest);
    Ok(Self { code, size: size as u8, digest })
  }

  /// Returns the code of the multihash.
  pub fn code(&self) -> u64 { self.code }

  /// Returns the size of the digest.
  pub fn size(&self) -> u8 { self.size }

  /// Returns the digest.
  pub fn digest(&self) -> &[u8] { &self.digest[..self.size as usize] }

  /// Reads a multihash from a byte stream.
  pub fn read(r: &mut ByteCursor) -> Result<Self, Error>
  where Self: Sized {
    let (code, size, digest) = match read_multihash(r) {
      Ok((c, s, d)) => (c, s, d),
      Err(e) => return Err(e),
    };
    Ok(Self { code, size, digest })
  }

  /// Parses a multihash from a bytes.
  ///
  /// You need to make sure the passed in bytes have the correct length. The
  /// digest length needs to match the `size` value of the multihash.
  pub fn from_bytes(bytes: &[u8]) -> Result<Self, Error>
  where Self: Sized {
    let mut r = ByteCursor::new(bytes.to_vec());
    let result = match Self::read(&mut r) {
      Ok(r) => r,
      Err(_) => return Err(Error::Varint(decode::Error::Overflow)),
    };
    // There were more bytes supplied than read
    if bytes.len() >= r.position() as usize + 1 {
      return Err(Error::InvalidSize(r.get_ref().len().try_into().expect(
        "Currently the maximum size is 255, therefore always fits into usize",
      )));
    }

    Ok(result)
  }

  /// Writes a multihash to a byte stream.
  pub fn write(&self, w: &mut ByteCursor) -> Result<(), Error> {
    write_multihash(w, self.code(), self.size(), self.digest())
  }

  /// Returns the bytes of a multihash.
  pub fn to_bytes(&self) -> Vec<u8> {
    let mut bytes = ByteCursor::new(Vec::with_capacity(self.size().into()));
    self.write(&mut bytes).expect("writing to a vec should never fail");

    bytes.into_inner()
  }
}

// Don't hash the whole allocated space, but just the actual digest
#[allow(clippy::derive_hash_xor_eq)]
impl<const S: usize> core::hash::Hash for Multihash<S> {
  fn hash<T: core::hash::Hasher>(&self, state: &mut T) {
    self.code.hash(state);
    self.digest().hash(state);
  }
}

impl<const S: usize> From<Multihash<S>> for Vec<u8> {
  fn from(multihash: Multihash<S>) -> Self { multihash.to_bytes() }
}

#[cfg(feature = "scale-codec")]
impl<const S: usize> parity_scale_codec::Encode for Multihash<S> {
  fn encode_to<EncOut: parity_scale_codec::Output + ?Sized>(
    &self,
    dest: &mut EncOut,
  ) {
    let mut digest = [0; S];
    digest.copy_from_slice(&self.digest);
    self.code.encode_to(dest);
    self.size.encode_to(dest);
    digest.encode_to(dest);
  }
}

#[cfg(feature = "scale-codec")]
impl<const S: usize> parity_scale_codec::EncodeLike for Multihash<S> {}

#[cfg(feature = "scale-codec")]
impl<const S: usize> parity_scale_codec::Decode for Multihash<S> {
  fn decode<DecIn: parity_scale_codec::Input>(
    input: &mut DecIn,
  ) -> Result<Self, parity_scale_codec::Error> {
    Ok(Multihash {
      code: parity_scale_codec::Decode::decode(input)?,
      size: parity_scale_codec::Decode::decode(input)?,
      digest: <[u8; S]>::decode(input)?,
    })
  }
}

/// Writes the multihash to a byte stream.
pub fn write_multihash(
  w: &mut ByteCursor,
  code: u64,
  size: u8,
  digest: &[u8],
) -> Result<(), Error> {
  let mut code_buf = varint_encode::u64_buffer();
  let code = varint_encode::u64(code, &mut code_buf);

  let mut size_buf = varint_encode::u8_buffer();
  let size = varint_encode::u8(size, &mut size_buf);

  match w.write_all(code) {
    Ok(_) => (),
    Err(_) => return Err(Error::Varint(decode::Error::Overflow)),
  };
  match w.write_all(size) {
    Ok(_) => (),
    Err(_) => return Err(Error::Varint(decode::Error::Overflow)),
  };
  match w.write_all(digest) {
    Ok(_) => (),
    Err(_) => return Err(Error::Varint(decode::Error::Overflow)),
  };
  w.set_position(0);
  Ok(())
}

/// Reads 64 bits from a byte array into a u64 starting at the current
/// Bytecursor position Adapted from unsigned-varint's read_u64 generated
/// function
pub fn read_u64(r: &mut ByteCursor) -> Result<u64, Error> {
  let mut b = varint_encode::u64_buffer();
  for i in 0..b.len() {
    let n = r.read(&mut b[i..(i + 1)]);
    if n == 0 {
      return Err(Error::Varint(decode::Error::Overflow));
    }
    if decode::is_last(b[i]) {
      match decode::u64(&b[..=i]) {
        Ok(d) => return Ok(d.0),
        Err(_) => return Err(Error::Varint(decode::Error::Overflow)),
      };
      // return Ok(decode::u64(&b[..=i]).unwrap().0);
    }
  }
  Err(Error::Varint(decode::Error::Overflow))
}

/// Reads a multihash from a byte stream that contains a full multihash (code,
/// size and the digest)
///
/// Returns the code, size and the digest. The size is the actual size and not
/// the maximum/allocated size of the digest.
///
/// Currently the maximum size for a digest is 255 bytes.
pub fn read_multihash<const S: usize>(
  r: &mut ByteCursor,
) -> Result<(u64, u8, [u8; S]), Error> {
  let code = match read_u64(r) {
    Ok(c) => c,
    Err(e) => return Err(e),
  };
  let size = match read_u64(r) {
    Ok(s) => s,
    Err(e) => return Err(e),
  };

  if size > S.try_into().unwrap() || size > u8::MAX as u64 {
    return Err(Error::InvalidSize(size));
  }

  let mut digest = [0; S];

  match r.read_exact(&mut digest[..size as usize]) {
    Ok(_) => (),
    Err(_) => return Err(Error::Varint(decode::Error::Overflow)),
  }
  Ok((code, size as u8, digest))
}

#[cfg(test)]
mod tests {
  use super::*;
  use crate::multihash_impl::Code;

  #[test]
  fn roundtrip() {
    let hash = Code::Sha2_256.digest(b"hello world");
    let mut buf = ByteCursor::new([0u8; 35].to_vec());
    hash.write(&mut buf).unwrap();
    buf.set_position(0);
    let hash2 = Multihash::read(&mut buf).unwrap();
    assert_eq!(hash, hash2);
  }

  #[test]
  #[cfg(feature = "scale-codec")]
  fn test_scale() {
    use parity_scale_codec::{
      Decode,
      Encode,
    };

    let mh = Multihash::<32>::default();
    let bytes = mh.encode();
    let mh2: Multihash<32> = Decode::decode(&mut &bytes[..]).unwrap();
    assert_eq!(mh, mh2);
  }

  #[test]
  #[cfg(feature = "serde-codec")]
  fn test_serde() {
    let mh = Multihash::<32>::default();
    let bytes = serde_json::to_string(&mh).unwrap();
    let mh2 = serde_json::from_str(&bytes).unwrap();
    assert_eq!(mh, mh2);
  }
}