1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
use std::{
io::{Read, Write},
sync::Arc,
time::{Duration, Instant},
};
use bytes::Bytes;
use clone_macro::clone;
use once_cell::sync::Lazy;
use parking_lot::Mutex;
use stdcode::StdcodeSerializeExt;
use crate::{
multiplex::stream::{RelKind, StreamMessage},
Stream,
};
use super::{inflight::Inflight, reorderer::Reorderer, StreamQueues};
const MSS: usize = 1150;
/// The raw internal state of a stream.
///
/// This is exposed so that crates other than `sosistab2` itself can use the reliable-stream logic of `sosistab2`, outside the context of multiplexing streams over a `sosistab2::Multiplex`.
///
/// A StreamState is constructed and used in a rather particular way:
/// - On construction, a `tick_notify` closure is passed in.
/// - The caller must arrange so that `StreamState::tick` is called
/// - every time `tick_notify` is called
/// - `tick_retval` after the last tick, where `tick_retval` is the return value of the last time the state was ticked
/// - inject_incoming is called on every incoming message
///
/// As long as the above holds, the `Stream` corresponding to the `StreamState`, which is returned from the `StreamState` constructor as well, will work properly.
pub struct StreamState {
phase: Phase,
stream_id: u16,
additional_data: String,
incoming_queue: Vec<StreamMessage>,
queues: Arc<Mutex<StreamQueues>>,
local_notify: Arc<async_event::Event>,
tick_notify: Arc<dyn Fn() + Send + Sync + 'static>,
// read variables
next_unseen_seqno: u64,
reorderer: Reorderer<Bytes>,
// write variables
inflight: Inflight,
next_write_seqno: u64,
cwnd: f64,
ssthresh: f64,
in_recovery: bool,
last_write_time: Instant,
}
impl Drop for StreamState {
fn drop(&mut self) {
self.queues.lock().closed = true;
self.local_notify.notify_all();
}
}
impl StreamState {
/// Creates a new StreamState, in the pre-SYN-sent state. Also returns the "user-facing" handle.
pub fn new_pending(
tick_notify: impl Fn() + Send + Sync + 'static,
stream_id: u16,
label: String,
) -> (Self, Stream) {
Self::new_in_phase(tick_notify, stream_id, Phase::Pending, label)
}
/// Creates a new StreamState, in the established state. Also returns the "user-facing" handle.
pub fn new_established(
tick_notify: impl Fn() + Send + Sync + 'static,
stream_id: u16,
label: String,
) -> (Self, Stream) {
Self::new_in_phase(tick_notify, stream_id, Phase::Established, label)
}
/// Creates a new StreamState, in the specified state. Also returns the "user-facing" handle.
fn new_in_phase(
tick_notify: impl Fn() + Send + Sync + 'static,
stream_id: u16,
phase: Phase,
label: String,
) -> (Self, Stream) {
let queues = Arc::new(Mutex::new(StreamQueues::default()));
let ready = Arc::new(async_event::Event::new());
let tick_notify: Arc<dyn Fn() + Send + Sync + 'static> = Arc::new(tick_notify);
let handle = Stream::new(
clone!([tick_notify], move || tick_notify()),
ready.clone(),
queues.clone(),
label.clone().into(),
);
static START: Lazy<Instant> = Lazy::new(Instant::now);
let state = Self {
phase,
stream_id,
incoming_queue: Default::default(),
queues,
local_notify: ready,
next_unseen_seqno: 0,
reorderer: Reorderer::default(),
inflight: Inflight::new(),
next_write_seqno: 0,
cwnd: 4.0,
ssthresh: 0.0,
tick_notify,
in_recovery: false,
additional_data: label,
last_write_time: *START,
};
(state, handle)
}
/// Injects an incoming message.
pub fn inject_incoming(&mut self, msg: StreamMessage) {
self.incoming_queue.push(msg);
(self.tick_notify)();
}
/// "Ticks" this StreamState, which advances its state. Any outgoing messages generated are passed to the callback given. Returns the correct time to call tick again at --- but if tick_notify, passed in during construction, fires, the stream must be ticked again.
///
/// Returns None if the correct option is to delete the whole thing.
pub fn tick(&mut self, mut outgoing_callback: impl FnMut(StreamMessage)) -> Option<Instant> {
log::trace!("ticking {} at {:?}", self.stream_id, self.phase);
let now: Instant = Instant::now();
match self.phase {
Phase::Pending => {
// send a SYN, and transition into SynSent
outgoing_callback(StreamMessage::Rel {
kind: RelKind::Syn,
stream_id: self.stream_id,
seqno: 0,
payload: Bytes::copy_from_slice(self.additional_data.as_bytes()),
});
let next_resend = now + Duration::from_secs(1);
self.phase = Phase::SynSent { next_resend };
Some(next_resend)
}
Phase::SynSent { next_resend } => {
if self.incoming_queue.drain(..).any(|msg| {
matches!(
msg,
StreamMessage::Rel {
kind: RelKind::SynAck,
stream_id: _,
seqno: _,
payload: _
}
)
}) {
self.phase = Phase::Established;
self.queues.lock().connected = true;
self.local_notify.notify_all();
Some(now)
} else if now >= next_resend {
outgoing_callback(StreamMessage::Rel {
kind: RelKind::Syn,
stream_id: self.stream_id,
seqno: 0,
payload: Bytes::copy_from_slice(self.additional_data.as_bytes()),
});
let next_resend = now + Duration::from_secs(1);
self.phase = Phase::SynSent { next_resend };
Some(next_resend)
} else {
Some(next_resend)
}
}
Phase::Established => {
// First, handle receiving packets. This is the easier part.
self.tick_read(now, &mut outgoing_callback);
// Then, handle sending packets. This involves congestion control, so it's the harder part.
self.tick_write(now, &mut outgoing_callback);
// If closed, then die
if self.queues.lock().closed {
self.phase = Phase::Closed;
}
// Finally, calculate the next interval.
Some(self.retick_time(now))
}
Phase::Closed => {
self.queues.lock().closed = true;
self.local_notify.notify_all();
for _ in self.incoming_queue.drain(..) {
outgoing_callback(StreamMessage::Rel {
kind: RelKind::Rst,
stream_id: self.stream_id,
seqno: 0,
payload: Default::default(),
});
}
None
}
}
}
fn tick_read(&mut self, _now: Instant, mut outgoing_callback: impl FnMut(StreamMessage)) {
// Put all incoming packets into the reorderer.
let mut to_ack = vec![];
// log::debug!("processing incoming queue of {}", self.incoming_queue.len());
for packet in self.incoming_queue.drain(..) {
// If the receive queue is too large, then we pretend like we don't see anything. The sender will eventually retransmit.
// This unifies flow control with congestion control at the cost of a bit of efficiency.
if self.queues.lock().read_stream.len() > 10_000_000 {
continue;
}
match packet {
StreamMessage::Rel {
kind: RelKind::Data,
stream_id,
seqno,
payload,
} => {
log::trace!("incoming seqno {stream_id}/{seqno}");
if self.reorderer.insert(seqno, payload) {
to_ack.push(seqno);
}
}
StreamMessage::Rel {
kind: RelKind::DataAck,
stream_id: _,
seqno: lowest_unseen_seqno, // *one greater* than the last packet that got to the other side
payload: selective_acks,
} => {
// mark every packet whose seqno is less than the given seqno as acked.
let ack_count = self.inflight.mark_acked_lt(lowest_unseen_seqno);
// then, we interpret the payload as a vector of acks that should additionally be taken care of.
// we don't increment ack_count here, since when we actually fill the gaps ack_count will increase sharply.
if let Ok(sacks) = stdcode::deserialize::<Vec<u64>>(&selective_acks) {
for sack in sacks {
self.inflight.mark_acked(sack);
}
}
// use BIC
for _ in 0..ack_count {
let bic_inc = if self.cwnd < self.ssthresh {
(self.ssthresh - self.cwnd) / 2.0
} else {
self.cwnd - self.ssthresh
}
.max(1.0)
.min(50.0)
.min(self.cwnd);
self.cwnd += bic_inc / self.cwnd;
}
log::debug!(
"ack_count = {ack_count}; send window {}; cwnd {:.1}; bdp {}; write queue {}",
self.inflight.inflight(),
self.cwnd,
self.inflight.bdp(),
self.queues.lock().write_stream.len()
);
self.local_notify.notify_all();
}
StreamMessage::Rel {
kind: RelKind::Syn,
stream_id,
seqno,
payload,
} => {
// retransmit our syn-ack
outgoing_callback(StreamMessage::Rel {
kind: RelKind::SynAck,
stream_id,
seqno,
payload,
});
}
StreamMessage::Rel {
kind: RelKind::Rst | RelKind::Fin,
stream_id: _,
seqno: _,
payload: _,
} => {
self.phase = Phase::Closed;
}
StreamMessage::Urel {
stream_id: _,
payload,
} => {
self.queues.lock().recv_urel.push_back(payload);
self.local_notify.notify_all();
}
_ => log::warn!("discarding out-of-turn packet {:?}", packet),
}
}
// Then, drain the reorderer
for (seqno, packet) in self.reorderer.take() {
self.next_unseen_seqno = seqno + 1;
self.queues.lock().read_stream.write_all(&packet).unwrap();
}
// Then, generate an ack.
if !to_ack.is_empty() {
self.local_notify.notify_all();
to_ack.retain(|a| a >= &self.next_unseen_seqno);
outgoing_callback(StreamMessage::Rel {
kind: RelKind::DataAck,
stream_id: self.stream_id,
seqno: self.next_unseen_seqno,
payload: to_ack.stdcode().into(),
});
}
}
fn start_recovery(&mut self) {
if !self.in_recovery {
log::debug!("*** START RECOVRY AT CWND = {}", self.cwnd);
// BIC
let beta = 0.15;
if self.cwnd < self.ssthresh {
self.ssthresh = self.cwnd * (2.0 - beta) / 2.0;
} else {
self.ssthresh = self.cwnd;
}
self.ssthresh = self.ssthresh.max(self.inflight.bdp() as f64);
self.cwnd *= 1.0 - beta;
self.cwnd = self.cwnd.max(1.0);
self.in_recovery = true;
}
}
fn stop_recovery(&mut self) {
self.in_recovery = false;
}
fn congested(&self, now: Instant) -> bool {
self.inflight.inflight() - self.inflight.lost_at(now) >= self.cwnd as usize
}
fn tick_write(&mut self, now: Instant, mut outgoing_callback: impl FnMut(StreamMessage)) {
log::trace!("tick_write for {}", self.stream_id);
// we first handle unreliable datagrams
{
let mut queues = self.queues.lock();
while let Some(payload) = queues.send_urel.pop_front() {
outgoing_callback(StreamMessage::Urel {
stream_id: self.stream_id,
payload,
});
}
}
if self.inflight.lost_at(now) > 0 {
self.start_recovery();
} else {
self.stop_recovery();
}
// speed here is calculated based on the idea that we should be able to transmit a whole cwnd of things in an rtt.
let speed = (self.cwnd / self.inflight.min_rtt().as_secs_f64()).max(500.0);
let mut writes_allowed = (now
.saturating_duration_since(self.last_write_time)
.as_secs_f64()
* speed) as usize;
while !self.congested(now) && writes_allowed > 0 {
// we do any retransmissions if necessary
if let Some((seqno, retrans_time)) = self.inflight.first_rto() {
if now >= retrans_time {
log::debug!(
"inflight = {}, lost = {}, cwnd = {}",
self.inflight.inflight(),
self.inflight.lost_at(now),
self.cwnd
);
log::debug!("*** retransmit {}", seqno);
let first = self.inflight.retransmit(seqno).expect("no first");
outgoing_callback(first);
continue;
}
}
// okay, we don't have retransmissions. this means we get to send a "normal" packet.
let mut queues = self.queues.lock();
if !queues.write_stream.is_empty() {
let mut buffer = vec![0; MSS];
let n = queues.write_stream.read(&mut buffer).unwrap();
buffer.truncate(n);
let seqno = self.next_write_seqno;
self.next_write_seqno += 1;
let msg = StreamMessage::Rel {
kind: RelKind::Data,
stream_id: self.stream_id,
seqno,
payload: buffer.into(),
};
self.inflight.insert(msg.clone());
self.local_notify.notify_all();
outgoing_callback(msg);
self.last_write_time = now;
writes_allowed -= 1;
continue;
}
break;
}
}
fn retick_time(&self, now: Instant) -> Instant {
let idle = { self.inflight.inflight() == 0 && self.queues.lock().write_stream.is_empty() };
if idle {
now + Duration::from_secs(100000)
} else {
now + Duration::from_millis(20)
}
}
}
#[derive(Clone, Copy, Debug)]
enum Phase {
Pending,
SynSent { next_resend: Instant },
Established,
Closed,
}