<h1>SORT ALGORITHMS WITH VISUALIZER</h1>
<p><strong><i>Obs:. This just a briefing of the algorithm!!!</i></strong></p>
<div>
<h3>SELECTION SORT</h3>
<p> Selection Sortis an algorithm that use order by selection<p>
<p>Worst, Medium and Best Case Complexity: <strong>O(n²)</strong>
<p><a href="https://en.wikipedia.org/wiki/Selection_sort">https://en.wikipedia.org/wiki/Selection_sort</a></p>
<p>sort::selection_sort::selection_sort<T>(arr: &mut Vec<T>, compare: fn(T,T) -> bool)</p>
</div>
<div>
<h3>QUICK SORT</h3>
<p> Quick sort is an algorithm that use strategy divide to conquer</p>
<p> Worst Case Complexity: <strong>O(<i>n</i>²)</strong>
<p> Medium Case Complexity: <strong>O(<i>n</i>)</strong>
<p> Best Case Complexity: <strong>O(<i>n</i> log <i>n</i>)</strong>
<p><a href="https://en.wikipedia.org/wiki/Quicksort">https://en.wikipedia.org/wiki/Quicksort</a></p>
<p>sort::quick_sort::quick_sort<T>(arr: &mut Vec<T>, start: usize, end: usize, compare: fn (T, T) -> bool)</p>
</div>
<div>
<h3>HEAP SORT</h3>
<p> Heap sort is an generalist algorithm that use the strategy order by selecion</p>
<p> Worst Case Complexity: <strong>O(<i>n</i> log <i>n</i>)</strong>
<p> Medium Case Complexity: <strong>O(<i>n</i> log <i>n</i>)</strong>
<p> Best Case Complexity: <strong>O(<i>n</i> log <i>n</i>)</strong>
<p><a href="https://en.wikipedia.org/wiki/Heapsort">https://en.wikipedia.org/wiki/Heapsort</a></p>
<p>sort::heapsort::heapsort<T>(arr: &mut Vec<T>)</p>
</div>
<div>
<h3>MERGE SORT</h3>
<p> Merge sort is an algorithm that use the strategy order by comparation and divide to conquer</p>
<p> Worst Case Complexity: <strong>O(<i>n</i> log <i>n</i>)</strong>
<p> Medium Case Complexity: <strong>O(<i>n</i> log <i>n</i>)</strong>
<p> Best Case Complexity: <strong>O(<i>n</i>)</strong>
<p><a href="https://en.wikipedia.org/wiki/Merge_sort">https://en.wikipedia.org/wiki/Merge_sort</a></p>
<p>sort::merge_sort::sort<T>(arr: &mut Vec<T>, begin: usize, end: usize, compare: fn(T, T) -> bool)</p>
</div>
<div>
<h3>RADIX SORT</h3>
<p> Radix sort is an algorithm that use the strategy non-comparative</p>
<p> Worst Case Complexity: <strong>O(<i>n</i>)</strong>
<p> Medium Case Complexity: <strong>O(<i>n</i>)</strong>
<p> Best Case Complexity: <strong>O(<i>n</i>)</strong>
<p><a href="https://en.wikipedia.org/wiki/Radix_sort">https://en.wikipedia.org/wiki/Radix_sort</a></p>
<p>sort::radix_sort::radix_sort<T>(arr: &mut Vec<T>)</p>
</div>