solar_positioning/
time.rs

1//! Time-related calculations for solar positioning.
2//!
3//! This module provides Julian date calculations and ΔT (Delta T) estimation
4//! following the algorithms from NREL SPA and Espenak & Meeus.
5
6#![allow(clippy::unreadable_literal)]
7#![allow(clippy::many_single_char_names)]
8
9use crate::math::{floor, polynomial};
10use crate::{Error, Result};
11#[cfg(feature = "std")]
12use chrono::{Datelike, TimeZone, Timelike};
13
14/// Seconds per day (86,400)
15const SECONDS_PER_DAY: f64 = 86_400.0;
16
17/// Julian Day Number for J2000.0 epoch (2000-01-01 12:00:00 UTC)
18const J2000_JDN: f64 = 2_451_545.0;
19
20/// Days per Julian century
21const DAYS_PER_CENTURY: f64 = 36_525.0;
22
23/// Julian date representation for astronomical calculations.
24///
25/// Follows the SPA algorithm described in Reda & Andreas (2003).
26/// Supports both Julian Date (JD) and Julian Ephemeris Date (JDE) calculations.
27#[derive(Debug, Clone, Copy, PartialEq)]
28pub struct JulianDate {
29    /// Julian Date (JD) - referenced to UT1
30    jd: f64,
31    /// Delta T in seconds - difference between TT and UT1
32    delta_t: f64,
33}
34
35impl JulianDate {
36    /// Creates a new Julian date from a timezone-aware chrono `DateTime`.
37    ///
38    /// Converts datetime to UTC for proper Julian Date calculation.
39    ///
40    /// # Arguments
41    /// * `datetime` - Timezone-aware date and time
42    /// * `delta_t` - ΔT in seconds (difference between TT and UT1)
43    ///
44    /// # Returns
45    /// Returns `Ok(JulianDate)` on success.
46    ///
47    /// # Errors
48    /// Returns error if the date/time components are invalid (e.g., invalid month, day, hour).
49    #[cfg(feature = "std")]
50    pub fn from_datetime<Tz: TimeZone>(
51        datetime: &chrono::DateTime<Tz>,
52        delta_t: f64,
53    ) -> Result<Self> {
54        // Convert the entire datetime to UTC for proper Julian Date calculation
55        let utc_datetime = datetime.with_timezone(&chrono::Utc);
56        Self::from_utc(
57            utc_datetime.year(),
58            utc_datetime.month(),
59            utc_datetime.day(),
60            utc_datetime.hour(),
61            utc_datetime.minute(),
62            f64::from(utc_datetime.second()) + f64::from(utc_datetime.nanosecond()) / 1e9,
63            delta_t,
64        )
65    }
66
67    /// Creates a new Julian date from year, month, day, hour, minute, and second in UTC.
68    ///
69    /// # Arguments
70    /// * `year` - Year (can be negative for BCE years)
71    /// * `month` - Month (1-12)
72    /// * `day` - Day of month (1-31)
73    /// * `hour` - Hour (0-23)
74    /// * `minute` - Minute (0-59)
75    /// * `second` - Second (0-59, can include fractional seconds)
76    /// * `delta_t` - ΔT in seconds (difference between TT and UT1)
77    ///
78    /// # Returns
79    /// Julian date or error if the date is invalid
80    ///
81    /// # Errors
82    /// Returns error if any date/time component is outside valid ranges (month 1-12, day 1-31, hour 0-23, minute 0-59, second 0-59.999).
83    ///
84    /// # Example
85    /// ```
86    /// # use solar_positioning::time::JulianDate;
87    /// let jd = JulianDate::from_utc(2023, 6, 21, 12, 0, 0.0, 69.0).unwrap();
88    /// assert!(jd.julian_date() > 2_460_000.0);
89    /// ```
90    pub fn from_utc(
91        year: i32,
92        month: u32,
93        day: u32,
94        hour: u32,
95        minute: u32,
96        second: f64,
97        delta_t: f64,
98    ) -> Result<Self> {
99        // Validate input ranges
100        if !(1..=12).contains(&month) {
101            return Err(Error::invalid_datetime("month must be between 1 and 12"));
102        }
103        if !(1..=31).contains(&day) {
104            return Err(Error::invalid_datetime("day must be between 1 and 31"));
105        }
106        if hour > 23 {
107            return Err(Error::invalid_datetime("hour must be between 0 and 23"));
108        }
109        if minute > 59 {
110            return Err(Error::invalid_datetime("minute must be between 0 and 59"));
111        }
112        if !(0.0..60.0).contains(&second) {
113            return Err(Error::invalid_datetime(
114                "second must be between 0 and 59.999...",
115            ));
116        }
117
118        let jd = calculate_julian_date(year, month, day, hour, minute, second);
119        Ok(Self { jd, delta_t })
120    }
121
122    /// Creates a Julian date assuming ΔT = 0.
123    ///
124    /// # Arguments
125    /// * `year` - Year (can be negative for BCE years)
126    /// * `month` - Month (1-12)
127    /// * `day` - Day of month (1-31)
128    /// * `hour` - Hour (0-23)
129    /// * `minute` - Minute (0-59)
130    /// * `second` - Second (0-59, can include fractional seconds)
131    ///
132    /// # Returns
133    /// Returns `Ok(JulianDate)` with ΔT = 0 on success.
134    ///
135    /// # Errors
136    /// Returns error if the date/time components are outside valid ranges.
137    pub fn from_utc_simple(
138        year: i32,
139        month: u32,
140        day: u32,
141        hour: u32,
142        minute: u32,
143        second: f64,
144    ) -> Result<Self> {
145        Self::from_utc(year, month, day, hour, minute, second, 0.0)
146    }
147
148    /// Gets the Julian Date (JD) value.
149    ///
150    /// # Returns
151    /// Julian Date referenced to UT1
152    #[must_use]
153    pub const fn julian_date(&self) -> f64 {
154        self.jd
155    }
156
157    /// Gets the ΔT value in seconds.
158    ///
159    /// # Returns
160    /// ΔT (Delta T) in seconds
161    #[must_use]
162    pub const fn delta_t(&self) -> f64 {
163        self.delta_t
164    }
165
166    /// Calculates the Julian Ephemeris Day (JDE).
167    ///
168    /// JDE = JD + ΔT/86400
169    ///
170    /// # Returns
171    /// Julian Ephemeris Day
172    #[must_use]
173    pub fn julian_ephemeris_day(&self) -> f64 {
174        self.jd + self.delta_t / SECONDS_PER_DAY
175    }
176
177    /// Calculates the Julian Century (JC) from J2000.0.
178    ///
179    /// JC = (JD - 2451545.0) / 36525
180    ///
181    /// # Returns
182    /// Julian centuries since J2000.0 epoch
183    #[must_use]
184    pub fn julian_century(&self) -> f64 {
185        (self.jd - J2000_JDN) / DAYS_PER_CENTURY
186    }
187
188    /// Calculates the Julian Ephemeris Century (JCE) from J2000.0.
189    ///
190    /// JCE = (JDE - 2451545.0) / 36525
191    ///
192    /// # Returns
193    /// Julian ephemeris centuries since J2000.0 epoch
194    #[must_use]
195    pub fn julian_ephemeris_century(&self) -> f64 {
196        (self.julian_ephemeris_day() - J2000_JDN) / DAYS_PER_CENTURY
197    }
198
199    /// Calculates the Julian Ephemeris Millennium (JME) from J2000.0.
200    ///
201    /// JME = JCE / 10
202    ///
203    /// # Returns
204    /// Julian ephemeris millennia since J2000.0 epoch
205    #[must_use]
206    pub fn julian_ephemeris_millennium(&self) -> f64 {
207        self.julian_ephemeris_century() / 10.0
208    }
209
210    /// Add days to the Julian date (like Java constructor: new `JulianDate(jd.julianDate()` + i - 1, 0))
211    pub(crate) fn add_days(self, days: f64) -> Self {
212        Self {
213            jd: self.jd + days,
214            delta_t: self.delta_t,
215        }
216    }
217}
218
219/// Calculates Julian Date from UTC date/time components.
220///
221/// This follows the algorithm from Reda & Andreas (2003), which is based on
222/// Meeus, "Astronomical Algorithms", 2nd edition.
223fn calculate_julian_date(
224    year: i32,
225    month: u32,
226    day: u32,
227    hour: u32,
228    minute: u32,
229    second: f64,
230) -> f64 {
231    let mut y = year;
232    let mut m = i32::try_from(month).expect("month should be valid i32");
233
234    // Adjust for January and February being treated as months 13 and 14 of previous year
235    if m < 3 {
236        y -= 1;
237        m += 12;
238    }
239
240    // Calculate fractional day
241    let d = f64::from(day) + (f64::from(hour) + (f64::from(minute) + second / 60.0) / 60.0) / 24.0;
242
243    // Basic Julian Date calculation
244    let mut jd =
245        floor(365.25 * (f64::from(y) + 4716.0)) + floor(30.6001 * f64::from(m + 1)) + d - 1524.5;
246
247    // Gregorian calendar correction (after October 15, 1582)
248    // JDN 2299161 corresponds to October 15, 1582
249    if jd >= 2_299_161.0 {
250        let a = floor(f64::from(y) / 100.0);
251        let b = 2.0 - a + floor(a / 4.0);
252        jd += b;
253    }
254
255    jd
256}
257
258/// ΔT (Delta T) estimation functions.
259///
260/// ΔT represents the difference between Terrestrial Time (TT) and Universal Time (UT1).
261/// These estimates are based on Espenak and Meeus polynomial fits updated in 2014.
262pub struct DeltaT;
263
264impl DeltaT {
265    /// Estimates ΔT for a given decimal year.
266    ///
267    /// Based on polynomial fits from Espenak & Meeus, updated 2014.
268    /// See: <https://www.eclipsewise.com/help/deltatpoly2014.html>
269    ///
270    /// # Arguments
271    /// * `decimal_year` - Year with fractional part (e.g., 2024.5 for mid-2024)
272    ///
273    /// # Returns
274    /// Estimated ΔT in seconds
275    ///
276    /// # Errors
277    /// Returns error for years outside the valid range (-500 to 3000 CE)
278    ///
279    /// # Example
280    /// ```
281    /// # use solar_positioning::time::DeltaT;
282    /// let delta_t = DeltaT::estimate(2024.0).unwrap();
283    /// assert!(delta_t > 60.0 && delta_t < 80.0); // Reasonable range for 2024
284    /// ```
285    #[allow(clippy::too_many_lines)] // Comprehensive polynomial fit across historical periods
286    pub fn estimate(decimal_year: f64) -> Result<f64> {
287        let year = decimal_year;
288
289        if !year.is_finite() {
290            return Err(Error::invalid_datetime("year must be finite"));
291        }
292
293        let delta_t = if year < -500.0 {
294            let u = (year - 1820.0) / 100.0;
295            polynomial(&[-20.0, 0.0, 32.0], u)
296        } else if year < 500.0 {
297            let u = year / 100.0;
298            polynomial(
299                &[
300                    10583.6,
301                    -1014.41,
302                    33.78311,
303                    -5.952053,
304                    -0.1798452,
305                    0.022174192,
306                    0.0090316521,
307                ],
308                u,
309            )
310        } else if year < 1600.0 {
311            let u = (year - 1000.0) / 100.0;
312            polynomial(
313                &[
314                    1574.2,
315                    -556.01,
316                    71.23472,
317                    0.319781,
318                    -0.8503463,
319                    -0.005050998,
320                    0.0083572073,
321                ],
322                u,
323            )
324        } else if year < 1700.0 {
325            let t = year - 1600.0;
326            polynomial(&[120.0, -0.9808, -0.01532, 1.0 / 7129.0], t)
327        } else if year < 1800.0 {
328            let t = year - 1700.0;
329            polynomial(
330                &[8.83, 0.1603, -0.0059285, 0.00013336, -1.0 / 1_174_000.0],
331                t,
332            )
333        } else if year < 1860.0 {
334            let t = year - 1800.0;
335            polynomial(
336                &[
337                    13.72,
338                    -0.332447,
339                    0.0068612,
340                    0.0041116,
341                    -0.00037436,
342                    0.0000121272,
343                    -0.0000001699,
344                    0.000000000875,
345                ],
346                t,
347            )
348        } else if year < 1900.0 {
349            let t = year - 1860.0;
350            polynomial(
351                &[
352                    7.62,
353                    0.5737,
354                    -0.251754,
355                    0.01680668,
356                    -0.0004473624,
357                    1.0 / 233_174.0,
358                ],
359                t,
360            )
361        } else if year < 1920.0 {
362            let t = year - 1900.0;
363            polynomial(&[-2.79, 1.494119, -0.0598939, 0.0061966, -0.000197], t)
364        } else if year < 1941.0 {
365            let t = year - 1920.0;
366            polynomial(&[21.20, 0.84493, -0.076100, 0.0020936], t)
367        } else if year < 1961.0 {
368            let t = year - 1950.0;
369            polynomial(&[29.07, 0.407, -1.0 / 233.0, 1.0 / 2547.0], t)
370        } else if year < 1986.0 {
371            let t = year - 1975.0;
372            polynomial(&[45.45, 1.067, -1.0 / 260.0, -1.0 / 718.0], t)
373        } else if year < 2005.0 {
374            let t = year - 2000.0;
375            polynomial(
376                &[
377                    63.86,
378                    0.3345,
379                    -0.060374,
380                    0.0017275,
381                    0.000651814,
382                    0.00002373599,
383                ],
384                t,
385            )
386        } else if year < 2015.0 {
387            let t = year - 2005.0;
388            polynomial(&[64.69, 0.2930], t)
389        } else if year <= 3000.0 {
390            let t = year - 2015.0;
391            polynomial(&[67.62, 0.3645, 0.0039755], t)
392        } else {
393            return Err(Error::invalid_datetime(
394                "ΔT estimates not available beyond year 3000",
395            ));
396        };
397
398        Ok(delta_t)
399    }
400
401    /// Estimates ΔT from year and month.
402    ///
403    /// Calculates decimal year as: year + (month - 0.5) / 12
404    ///
405    /// # Arguments
406    /// * `year` - Year
407    /// * `month` - Month (1-12)
408    ///
409    /// # Returns
410    /// Returns estimated ΔT in seconds.
411    ///
412    /// # Errors
413    /// Returns error if month is outside the range 1-12.
414    ///
415    /// # Panics
416    /// This function does not panic.
417    pub fn estimate_from_date(year: i32, month: u32) -> Result<f64> {
418        if !(1..=12).contains(&month) {
419            return Err(Error::invalid_datetime("month must be between 1 and 12"));
420        }
421
422        let decimal_year = f64::from(year) + (f64::from(month) - 0.5) / 12.0;
423        Self::estimate(decimal_year)
424    }
425
426    /// Estimates ΔT from any date-like type.
427    ///
428    /// Convenience method that extracts the year and month from any chrono type
429    /// that implements `Datelike` (`DateTime`, `NaiveDateTime`, `NaiveDate`, etc.).
430    ///
431    /// # Arguments
432    /// * `date` - Any date-like type
433    ///
434    /// # Returns
435    /// Returns estimated ΔT in seconds.
436    ///
437    /// # Errors
438    /// Returns error if the date components are invalid.
439    ///
440    /// # Example
441    /// ```
442    /// # use solar_positioning::time::DeltaT;
443    /// # use chrono::{DateTime, FixedOffset, NaiveDate};
444    ///
445    /// // Works with DateTime
446    /// let datetime = "2024-06-21T12:00:00-07:00".parse::<DateTime<FixedOffset>>().unwrap();
447    /// let delta_t = DeltaT::estimate_from_date_like(datetime).unwrap();
448    /// assert!(delta_t > 60.0 && delta_t < 80.0);
449    ///
450    /// // Also works with NaiveDate
451    /// let date = NaiveDate::from_ymd_opt(2024, 6, 21).unwrap();
452    /// let delta_t2 = DeltaT::estimate_from_date_like(date).unwrap();
453    /// assert_eq!(delta_t, delta_t2);
454    /// ```
455    #[cfg(feature = "std")]
456    #[allow(clippy::needless_pass_by_value)]
457    pub fn estimate_from_date_like<D: Datelike>(date: D) -> Result<f64> {
458        Self::estimate_from_date(date.year(), date.month())
459    }
460}
461
462#[cfg(test)]
463mod tests {
464    use super::*;
465
466    const EPSILON: f64 = 1e-10;
467
468    #[test]
469    fn test_julian_date_creation() {
470        let jd = JulianDate::from_utc(2000, 1, 1, 12, 0, 0.0, 0.0).unwrap();
471
472        // J2000.0 epoch should be exactly 2451545.0
473        assert!((jd.julian_date() - J2000_JDN).abs() < EPSILON);
474        assert_eq!(jd.delta_t(), 0.0);
475    }
476
477    #[test]
478    fn test_julian_date_validation() {
479        assert!(JulianDate::from_utc(2024, 13, 1, 0, 0, 0.0, 0.0).is_err()); // Invalid month
480        assert!(JulianDate::from_utc(2024, 1, 32, 0, 0, 0.0, 0.0).is_err()); // Invalid day
481        assert!(JulianDate::from_utc(2024, 1, 1, 24, 0, 0.0, 0.0).is_err()); // Invalid hour
482        assert!(JulianDate::from_utc(2024, 1, 1, 0, 60, 0.0, 0.0).is_err()); // Invalid minute
483        assert!(JulianDate::from_utc(2024, 1, 1, 0, 0, 60.0, 0.0).is_err()); // Invalid second
484    }
485
486    #[test]
487    fn test_julian_centuries() {
488        let jd = JulianDate::from_utc(2000, 1, 1, 12, 0, 0.0, 0.0).unwrap();
489
490        // J2000.0 should give JC = 0
491        assert!(jd.julian_century().abs() < EPSILON);
492        assert!(jd.julian_ephemeris_century().abs() < EPSILON);
493        assert!(jd.julian_ephemeris_millennium().abs() < EPSILON);
494    }
495
496    #[test]
497    fn test_julian_ephemeris_day() {
498        let delta_t = 69.0; // seconds
499        let jd = JulianDate::from_utc(2023, 6, 21, 12, 0, 0.0, delta_t).unwrap();
500
501        let jde = jd.julian_ephemeris_day();
502        let expected = jd.julian_date() + delta_t / SECONDS_PER_DAY;
503
504        assert!((jde - expected).abs() < EPSILON);
505    }
506
507    #[test]
508    fn test_gregorian_calendar_correction() {
509        // Test dates before and after Gregorian calendar adoption
510        // October 4, 1582 was followed by October 15, 1582
511        let julian_date = JulianDate::from_utc(1582, 10, 4, 12, 0, 0.0, 0.0).unwrap();
512        let gregorian_date = JulianDate::from_utc(1582, 10, 15, 12, 0, 0.0, 0.0).unwrap();
513
514        // The calendar dates are 11 days apart, but in Julian Day Numbers they should be 1 day apart
515        // because the 10-day gap was artificial
516        let diff = gregorian_date.julian_date() - julian_date.julian_date();
517        assert!(
518            (diff - 1.0).abs() < 1e-6,
519            "Expected 1 day difference in JD, got {diff}"
520        );
521
522        // Test that the Gregorian correction is applied correctly
523        // Dates after October 15, 1582 should have the correction
524        let pre_gregorian = JulianDate::from_utc(1582, 10, 1, 12, 0, 0.0, 0.0).unwrap();
525        let post_gregorian = JulianDate::from_utc(1583, 1, 1, 12, 0, 0.0, 0.0).unwrap();
526
527        // Verify that both exist and the calculation doesn't panic
528        assert!(pre_gregorian.julian_date() > 2_000_000.0);
529        assert!(post_gregorian.julian_date() > pre_gregorian.julian_date());
530    }
531
532    #[test]
533    fn test_delta_t_modern_estimates() {
534        // Test some known ranges
535        let delta_t_2000 = DeltaT::estimate(2000.0).unwrap();
536        let delta_t_2020 = DeltaT::estimate(2020.0).unwrap();
537
538        assert!(delta_t_2000 > 60.0 && delta_t_2000 < 70.0);
539        assert!(delta_t_2020 > 65.0 && delta_t_2020 < 75.0);
540        assert!(delta_t_2020 > delta_t_2000); // ΔT is generally increasing
541    }
542
543    #[test]
544    fn test_delta_t_historical_estimates() {
545        let delta_t_1900 = DeltaT::estimate(1900.0).unwrap();
546        let delta_t_1950 = DeltaT::estimate(1950.0).unwrap();
547
548        assert!(delta_t_1900 < 0.0); // Negative in early 20th century
549        assert!(delta_t_1950 > 25.0 && delta_t_1950 < 35.0);
550    }
551
552    #[test]
553    fn test_delta_t_boundary_conditions() {
554        // Test edge cases
555        assert!(DeltaT::estimate(-500.0).is_ok());
556        assert!(DeltaT::estimate(3000.0).is_ok());
557        assert!(DeltaT::estimate(-501.0).is_ok()); // Should work for ancient dates
558        assert!(DeltaT::estimate(3001.0).is_err()); // Should fail beyond 3000
559    }
560
561    #[test]
562    fn test_delta_t_from_date() {
563        let delta_t = DeltaT::estimate_from_date(2024, 6).unwrap();
564        let delta_t_decimal = DeltaT::estimate(2024.5 - 1.0 / 24.0).unwrap(); // June = month 6, so (6-0.5)/12 ≈ 0.458
565
566        // Should be very close
567        assert!((delta_t - delta_t_decimal).abs() < 0.01);
568
569        // Test invalid month
570        assert!(DeltaT::estimate_from_date(2024, 13).is_err());
571        assert!(DeltaT::estimate_from_date(2024, 0).is_err());
572    }
573
574    #[test]
575    #[cfg(feature = "std")]
576    fn test_delta_t_from_date_like() {
577        use chrono::{DateTime, FixedOffset, NaiveDate, Utc};
578
579        // Test with DateTime<FixedOffset>
580        let datetime_fixed = "2024-06-15T12:00:00-07:00"
581            .parse::<DateTime<FixedOffset>>()
582            .unwrap();
583        let delta_t_fixed = DeltaT::estimate_from_date_like(datetime_fixed).unwrap();
584
585        // Test with DateTime<Utc>
586        let datetime_utc = "2024-06-15T19:00:00Z".parse::<DateTime<Utc>>().unwrap();
587        let delta_t_utc = DeltaT::estimate_from_date_like(datetime_utc).unwrap();
588
589        // Test with NaiveDate
590        let naive_date = NaiveDate::from_ymd_opt(2024, 6, 15).unwrap();
591        let delta_t_naive_date = DeltaT::estimate_from_date_like(naive_date).unwrap();
592
593        // Test with NaiveDateTime
594        let naive_datetime = naive_date.and_hms_opt(12, 0, 0).unwrap();
595        let delta_t_naive_datetime = DeltaT::estimate_from_date_like(naive_datetime).unwrap();
596
597        // Should all be identical since we only use year/month
598        assert_eq!(delta_t_fixed, delta_t_utc);
599        assert_eq!(delta_t_fixed, delta_t_naive_date);
600        assert_eq!(delta_t_fixed, delta_t_naive_datetime);
601
602        // Should match estimate_from_date
603        let delta_t_date = DeltaT::estimate_from_date(2024, 6).unwrap();
604        assert_eq!(delta_t_fixed, delta_t_date);
605
606        // Verify reasonable range for 2024
607        assert!(delta_t_fixed > 60.0 && delta_t_fixed < 80.0);
608    }
609
610    #[test]
611    fn test_specific_julian_dates() {
612        // Test some well-known dates
613
614        // Unix epoch: 1970-01-01 00:00:00 UTC
615        let unix_epoch = JulianDate::from_utc(1970, 1, 1, 0, 0, 0.0, 0.0).unwrap();
616        assert!((unix_epoch.julian_date() - 2_440_587.5).abs() < 1e-6);
617
618        // Y2K: 2000-01-01 00:00:00 UTC
619        let y2k = JulianDate::from_utc(2000, 1, 1, 0, 0, 0.0, 0.0).unwrap();
620        assert!((y2k.julian_date() - 2_451_544.5).abs() < 1e-6);
621    }
622}