solana-bpfloader 0.15.3

Solana BPF Loader
Documentation
pub mod alloc;
pub mod allocator_bump;
pub mod allocator_system;
pub mod bpf_verifier;

use alloc::Alloc;
use byteorder::{ByteOrder, LittleEndian, WriteBytesExt};
use libc::c_char;
use log::*;
use solana_rbpf::{EbpfVmRaw, MemoryRegion};
use solana_sdk::account::KeyedAccount;
use solana_sdk::instruction::InstructionError;
use solana_sdk::loader_instruction::LoaderInstruction;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::solana_entrypoint;
use std::alloc::Layout;
use std::any::Any;
use std::ffi::CStr;
use std::io::prelude::*;
use std::io::{Error, ErrorKind};
use std::mem;

/// Program heap allocators are intended to allocate/free from a given
/// chunk of memory.  The specific allocator implementation is
/// selectable at build-time.
/// Enable only one of the following BPFAllocator implementations.

/// Simple bump allocator, never frees
use allocator_bump::BPFAllocator;

/// Use the system heap (test purposes only).  This allocator relies on the system heap
/// and there is no mechanism to check read-write access privileges
/// at the moment.  Therefor you must disable memory bounds checking
// use allocator_system::BPFAllocator;

/// Default program heap size, allocators
/// are expected to enforce this
const DEFAULT_HEAP_SIZE: usize = 32 * 1024;

/// Abort helper functions, called when the BPF program calls `abort()`
pub fn helper_abort_verify(
    _arg1: u64,
    _arg2: u64,
    _arg3: u64,
    _arg4: u64,
    _arg5: u64,
    _context: &mut Option<Box<Any + 'static>>,
    _ro_regions: &[MemoryRegion],
    _rw_regions: &[MemoryRegion],
) -> Result<(()), Error> {
    Err(Error::new(
        ErrorKind::Other,
        "Error: BPF program called abort()!",
    ))
}
pub fn helper_abort(
    _arg1: u64,
    _arg2: u64,
    _arg3: u64,
    _arg4: u64,
    _arg5: u64,
    _context: &mut Option<Box<Any + 'static>>,
) -> u64 {
    // Never called because its verify function always returns an error
    0
}

/// Panic helper functions, called when the BPF program calls 'sol_panic_()`
/// The verify function returns an error which will cause the BPF program
/// to be halted immediately
pub fn helper_sol_panic_verify(
    _arg1: u64,
    _arg2: u64,
    _arg3: u64,
    _arg4: u64,
    _arg5: u64,
    _context: &mut Option<Box<Any + 'static>>,
    _ro_regions: &[MemoryRegion],
    _rw_regions: &[MemoryRegion],
) -> Result<(()), Error> {
    Err(Error::new(ErrorKind::Other, "Error: BPF program Panic!"))
}
pub fn helper_sol_panic(
    _arg1: u64,
    _arg2: u64,
    _arg3: u64,
    _arg4: u64,
    _arg5: u64,
    _context: &mut Option<Box<Any + 'static>>,
) -> u64 {
    // Never called because its verify function always returns an error
    0
}

/// Logging helper functions, called when the BPF program calls `sol_log_()` or
/// `sol_log_64_()`.  Both functions use a common verify function to validate
/// their parameters.
pub fn helper_sol_log_verify(
    addr: u64,
    _arg2: u64,
    _arg3: u64,
    _arg4: u64,
    _arg5: u64,
    _context: &mut Option<Box<Any + 'static>>,
    ro_regions: &[MemoryRegion],
    _rw_regions: &[MemoryRegion],
) -> Result<(()), Error> {
    for region in ro_regions.iter() {
        if region.addr <= addr && (addr as u64) < region.addr + region.len {
            let c_buf: *const c_char = addr as *const c_char;
            let max_size = region.addr + region.len - addr;
            unsafe {
                for i in 0..max_size {
                    if std::ptr::read(c_buf.offset(i as isize)) == 0 {
                        return Ok(());
                    }
                }
            }
            return Err(Error::new(ErrorKind::Other, "Error, Unterminated string"));
        }
    }
    Err(Error::new(
        ErrorKind::Other,
        "Error: Load segfault, bad string pointer",
    ))
}
pub fn helper_sol_log(
    addr: u64,
    _arg2: u64,
    _arg3: u64,
    _arg4: u64,
    _arg5: u64,
    _context: &mut Option<Box<Any + 'static>>,
) -> u64 {
    let c_buf: *const c_char = addr as *const c_char;
    let c_str: &CStr = unsafe { CStr::from_ptr(c_buf) };
    match c_str.to_str() {
        Ok(slice) => info!("sol_log: {:?}", slice),
        Err(e) => warn!("Error: Cannot print invalid string: {}", e),
    };
    0
}
pub fn helper_sol_log_u64(
    arg1: u64,
    arg2: u64,
    arg3: u64,
    arg4: u64,
    arg5: u64,
    _context: &mut Option<Box<Any + 'static>>,
) -> u64 {
    info!(
        "sol_log_u64: {:#x}, {:#x}, {:#x}, {:#x}, {:#x}",
        arg1, arg2, arg3, arg4, arg5
    );
    0
}

/// Dynamic memory allocation helper called when the BPF program calls
/// `sol_alloc_free_()`.  The allocator is expected to allocate/free
/// from/to a given chunk of memory and enforce size restrictions.  The
/// memory chunk is given to the allocator during allocator creation and
/// information about that memory (start address and size) is passed
/// to the VM to use for enforcement.
pub fn helper_sol_alloc_free(
    size: u64,
    free_ptr: u64,
    _arg3: u64,
    _arg4: u64,
    _arg5: u64,
    context: &mut Option<Box<Any + 'static>>,
) -> u64 {
    if let Some(context) = context {
        if let Some(allocator) = context.downcast_mut::<BPFAllocator>() {
            return {
                let layout = Layout::from_size_align(size as usize, mem::align_of::<u8>()).unwrap();
                if free_ptr == 0 {
                    match allocator.alloc(layout) {
                        Ok(ptr) => ptr as u64,
                        Err(_) => 0,
                    }
                } else {
                    allocator.dealloc(free_ptr as *mut u8, layout);
                    0
                }
            };
        };
    }
    panic!("Failed to get alloc_free context");
}

pub fn create_vm(prog: &[u8]) -> Result<(EbpfVmRaw, MemoryRegion), Error> {
    let mut vm = EbpfVmRaw::new(None)?;
    vm.set_verifier(bpf_verifier::check)?;
    vm.set_max_instruction_count(36000)?;
    vm.set_elf(&prog)?;
    vm.register_helper_ex("abort", Some(helper_abort_verify), helper_abort, None)?;
    vm.register_helper_ex(
        "sol_panic",
        Some(helper_sol_panic_verify),
        helper_sol_panic,
        None,
    )?;
    vm.register_helper_ex(
        "sol_panic_",
        Some(helper_sol_panic_verify),
        helper_sol_panic,
        None,
    )?;
    vm.register_helper_ex("sol_log", Some(helper_sol_log_verify), helper_sol_log, None)?;
    vm.register_helper_ex(
        "sol_log_",
        Some(helper_sol_log_verify),
        helper_sol_log,
        None,
    )?;
    vm.register_helper_ex("sol_log_64", None, helper_sol_log_u64, None)?;
    vm.register_helper_ex("sol_log_64_", None, helper_sol_log_u64, None)?;

    let heap = vec![0_u8; DEFAULT_HEAP_SIZE];
    let heap_region = MemoryRegion::new_from_slice(&heap);
    let context = Box::new(BPFAllocator::new(heap));
    vm.register_helper_ex(
        "sol_alloc_free_",
        None,
        helper_sol_alloc_free,
        Some(context),
    )?;

    Ok((vm, heap_region))
}

fn serialize_parameters(
    program_id: &Pubkey,
    keyed_accounts: &mut [KeyedAccount],
    data: &[u8],
    tick_height: u64,
) -> Vec<u8> {
    assert_eq!(32, mem::size_of::<Pubkey>());

    let mut v: Vec<u8> = Vec::new();
    v.write_u64::<LittleEndian>(keyed_accounts.len() as u64)
        .unwrap();
    for info in keyed_accounts.iter_mut() {
        v.write_u64::<LittleEndian>(info.signer_key().is_some() as u64)
            .unwrap();
        v.write_all(info.unsigned_key().as_ref()).unwrap();
        v.write_u64::<LittleEndian>(info.account.lamports).unwrap();
        v.write_u64::<LittleEndian>(info.account.data.len() as u64)
            .unwrap();
        v.write_all(&info.account.data).unwrap();
        v.write_all(info.account.owner.as_ref()).unwrap();
    }
    v.write_u64::<LittleEndian>(data.len() as u64).unwrap();
    v.write_all(data).unwrap();
    v.write_u64::<LittleEndian>(tick_height).unwrap();
    v.write_all(program_id.as_ref()).unwrap();
    v
}

fn deserialize_parameters(keyed_accounts: &mut [KeyedAccount], buffer: &[u8]) {
    assert_eq!(32, mem::size_of::<Pubkey>());

    let mut start = mem::size_of::<u64>();
    for info in keyed_accounts.iter_mut() {
        start += mem::size_of::<u64>(); // skip signer_key boolean
        start += mem::size_of::<Pubkey>(); // skip pubkey
        info.account.lamports = LittleEndian::read_u64(&buffer[start..]);

        start += mem::size_of::<u64>() // skip lamports
                  + mem::size_of::<u64>(); // skip length tag
        let end = start + info.account.data.len();
        info.account.data.clone_from_slice(&buffer[start..end]);

        start += info.account.data.len() // skip data
                  + mem::size_of::<Pubkey>(); // skip owner
    }
}

solana_entrypoint!(entrypoint);
fn entrypoint(
    program_id: &Pubkey,
    keyed_accounts: &mut [KeyedAccount],
    tx_data: &[u8],
    tick_height: u64,
) -> Result<(), InstructionError> {
    solana_logger::setup();

    if keyed_accounts[0].account.executable {
        let (progs, params) = keyed_accounts.split_at_mut(1);
        let prog = &progs[0].account.data;
        info!("Call BPF program");
        let (mut vm, heap_region) = match create_vm(prog) {
            Ok(info) => info,
            Err(e) => {
                warn!("Failed to create BPF VM: {}", e);
                return Err(InstructionError::GenericError);
            }
        };
        let mut v = serialize_parameters(program_id, params, &tx_data, tick_height);

        match vm.execute_program(v.as_mut_slice(), &[], &[heap_region]) {
            Ok(status) => {
                if 0 == status {
                    warn!("BPF program failed: {}", status);
                    return Err(InstructionError::GenericError);
                }
            }
            Err(e) => {
                warn!("BPF VM failed to run program: {}", e);
                return Err(InstructionError::GenericError);
            }
        }
        deserialize_parameters(params, &v);
        info!(
            "BPF program executed {} instructions",
            vm.get_last_instruction_count()
        );
    } else if let Ok(instruction) = bincode::deserialize(tx_data) {
        if keyed_accounts[0].signer_key().is_none() {
            warn!("key[0] did not sign the transaction");
            return Err(InstructionError::GenericError);
        }
        match instruction {
            LoaderInstruction::Write { offset, bytes } => {
                let offset = offset as usize;
                let len = bytes.len();
                debug!("Write: offset={} length={}", offset, len);
                if keyed_accounts[0].account.data.len() < offset + len {
                    warn!(
                        "Write overflow: {} < {}",
                        keyed_accounts[0].account.data.len(),
                        offset + len
                    );
                    return Err(InstructionError::GenericError);
                }
                keyed_accounts[0].account.data[offset..offset + len].copy_from_slice(&bytes);
            }
            LoaderInstruction::Finalize => {
                keyed_accounts[0].account.executable = true;
                info!(
                    "Finalize: account {:?}",
                    keyed_accounts[0].signer_key().unwrap()
                );
            }
        }
    } else {
        warn!("Invalid program transaction: {:?}", tx_data);
        return Err(InstructionError::GenericError);
    }
    Ok(())
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic(expected = "Error: Execution exceeded maximum number of instructions")]
    fn test_non_terminating_program() {
        #[rustfmt::skip]
        let prog = &[
            0x07, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, // r6 + 1
            0x05, 0x00, 0xfe, 0xff, 0x00, 0x00, 0x00, 0x00, // goto -2
            0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // exit
        ];
        let input = &mut [0x00];

        let mut vm = EbpfVmRaw::new(None).unwrap();
        vm.set_verifier(bpf_verifier::check).unwrap();
        vm.set_max_instruction_count(10).unwrap();
        vm.set_program(prog).unwrap();
        vm.execute_program(input, &[], &[]).unwrap();
    }
}