1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
use super::PxE1;
use crate::{u32_with_sign, MulAddType};

impl<const N: u32> PxE1<{ N }> {
    #[inline]
    pub const fn mul_add(self, b: Self, c: Self) -> Self {
        let ui_a = self.to_bits();
        let ui_b = b.to_bits();
        let ui_c = c.to_bits();
        Self::mul_add_ui(ui_a, ui_b, ui_c, crate::MulAddType::Add)
    }
    #[inline]
    pub const fn mul_sub(self, b: Self, c: Self) -> Self {
        let ui_a = self.to_bits();
        let ui_b = b.to_bits();
        let ui_c = c.to_bits();
        Self::mul_add_ui(ui_a, ui_b, ui_c, crate::MulAddType::SubC)
    }
    #[inline]
    pub const fn sub_product(self, a: Self, b: Self) -> Self {
        let ui_a = a.to_bits();
        let ui_b = b.to_bits();
        let ui_c = self.to_bits();
        Self::mul_add_ui(ui_a, ui_b, ui_c, crate::MulAddType::SubProd)
    }

    #[allow(clippy::cognitive_complexity)]
    const fn mul_add_ui(mut ui_a: u32, mut ui_b: u32, mut ui_c: u32, op: MulAddType) -> Self {
        let mut bits_more = false;
        //NaR
        if (ui_a == 0x_8000_0000) || (ui_b == 0x_8000_0000) || (ui_c == 0x_8000_0000) {
            return Self::NAR;
        } else if (ui_a == 0) || (ui_b == 0) {
            return match op {
                MulAddType::SubC => Self::from_bits(ui_c.wrapping_neg()),
                _ => Self::from_bits(ui_c),
            };
        }

        let sign_a = Self::sign_ui(ui_a);
        let sign_b = Self::sign_ui(ui_b);
        let sign_c = Self::sign_ui(ui_c); //^ (op == softposit_mulAdd_subC);
        let mut sign_z = sign_a ^ sign_b; // ^ (op == softposit_mulAdd_subProd);

        if sign_a {
            ui_a = ui_a.wrapping_neg();
        }
        if sign_b {
            ui_b = ui_b.wrapping_neg();
        }
        if sign_c {
            ui_c = ui_c.wrapping_neg();
        }

        if N == 2 {
            let reg_sa = Self::sign_reg_ui(ui_a);
            let reg_sb = Self::sign_reg_ui(ui_b);
            let mut u_z = if reg_sa & reg_sb {
                0x_4000_0000_u32
            } else {
                0x0
            };
            if sign_z {
                // i.e. negative prod
                if sign_c {
                    u_z |= ui_c;
                    u_z = u_z.wrapping_neg();
                } else {
                    //prod is negative
                    u_z = if ui_c == u_z {
                        0
                    } else if u_z > 0 {
                        0x_4000_0000
                    } else {
                        0x_C000_0000
                    };
                }
            } else {
                //prod : same sign signZ=0
                if sign_c {
                    u_z = if ui_c == u_z {
                        0
                    } else if u_z > 0 {
                        0x_4000_0000
                    } else {
                        0x_C000_0000
                    };
                } else {
                    //C is positive
                    u_z |= ui_c;
                }
            }
            Self::from_bits(u_z)
        } else {
            let (mut k_a, tmp) = Self::separate_bits_tmp(ui_a);
            let mut exp_a = (tmp >> 29) as i32; //to get 2 bits
            let frac_a = (tmp << 2) | 0x_8000_0000;

            let (k_b, tmp) = Self::separate_bits_tmp(ui_b);
            k_a += k_b;
            exp_a += (tmp >> 29) as i32;
            let mut frac64_z = (frac_a as u64) * (((tmp << 2) | 0x_8000_0000) as u64);

            if exp_a > 1 {
                k_a += 1;
                exp_a ^= 0x2;
            }

            let rcarry = (frac64_z & 0x_8000_0000_0000_0000) != 0; //1st bit of frac64_z
            if rcarry {
                if exp_a != 0 {
                    k_a += 1;
                }
                exp_a ^= 1;
                frac64_z >>= 1;
            }

            let mut k_z;
            let mut exp_z: i32;
            if ui_c != 0 {
                let (k_c, exp_c, frac_c) = Self::separate_bits(ui_c);
                let mut frac64_c = (frac_c as u64) << 32;
                let mut shift_right = (((k_a - k_c) as i16) << 1) + (exp_a - exp_c) as i16;

                exp_z = if shift_right < 0 {
                    // |ui_c| > |Prod|
                    if shift_right <= -63 {
                        bits_more = true;
                        frac64_z = 0;
                        shift_right = 0;
                    //set bits_more to one?
                    } else if (frac64_z << (64 + shift_right)) != 0 {
                        bits_more = true;
                    }
                    if sign_z == sign_c {
                        frac64_z = frac64_c + (frac64_z >> -shift_right);
                    } else {
                        //different signs
                        frac64_z = frac64_c - (frac64_z >> -shift_right);
                        sign_z = sign_c;
                        if bits_more {
                            frac64_z -= 1;
                        }
                    }
                    k_z = k_c;
                    exp_c
                } else if shift_right > 0 {
                    // |ui_c| < |Prod|
                    //if frac32C&((1<<shift_right)-1) {bits_more = true;}
                    if shift_right >= 63 {
                        bits_more = true;
                        frac64_c = 0;
                        shift_right = 0;
                    } else if (frac64_c << (64 - shift_right)) != 0 {
                        bits_more = true;
                    }
                    if sign_z == sign_c {
                        frac64_z += frac64_c >> shift_right;
                    } else {
                        frac64_z -= frac64_c >> shift_right;
                        if bits_more {
                            frac64_z -= 1;
                        }
                    }
                    k_z = k_a;
                    exp_a
                } else {
                    if (frac64_c == frac64_z) && (sign_z != sign_c) {
                        //check if same number
                        return Self::ZERO;
                    } else if sign_z == sign_c {
                        frac64_z += frac64_c;
                    } else if frac64_z < frac64_c {
                        frac64_z = frac64_c - frac64_z;
                        sign_z = sign_c;
                    } else {
                        frac64_z -= frac64_c;
                    }
                    k_z = k_a; // actually can be k_c too, no diff
                    exp_a //same here
                };
                let rcarry = (frac64_z & 0x_8000_0000_0000_0000) != 0; //first left bit

                if rcarry {
                    if exp_z != 0 {
                        k_z += 1;
                    }
                    exp_z ^= 1;
                    if (frac64_z & 0x1) != 0 {
                        bits_more = false;
                    }
                    frac64_z = (frac64_z >> 1) & 0x_7FFF_FFFF_FFFF_FFFF;
                } else {
                    //for subtract cases
                    if frac64_z != 0 {
                        while (frac64_z >> 61) == 0 {
                            k_z -= 1;
                            frac64_z <<= 2;
                        }
                    }
                    let ecarry = ((0x_4000_0000_0000_0000 & frac64_z) >> 62) != 0;

                    if !ecarry {
                        if exp_z == 0 {
                            k_z -= 1;
                        }
                        exp_z ^= 1;
                        frac64_z <<= 1;
                    }
                }
            } else {
                k_z = k_a;
                exp_z = exp_a;
            }

            let (mut regime, reg_sz, reg_z) = Self::calculate_regime(k_z);
            let reg_z = reg_z as u32;

            let u_z = if reg_z > (N - 2) {
                //max or min pos. exp and frac does not matter.
                if reg_sz {
                    0x_7FFF_FFFF & Self::mask()
                } else {
                    0x1 << (32 - N)
                }
            } else {
                let mut bit_n_plus_one = false;
                let mut frac_z: u32;
                if reg_z < N {
                    //remove hidden bits
                    frac64_z &= 0x_3FFF_FFFF_FFFF_FFFF;
                    frac_z = (frac64_z >> (reg_z + 33)) as u32; //frac32Z>>16;

                    if reg_z != (N - 2) {
                        bit_n_plus_one =
                            ((0x_8000_0000_0000_0000_u64 >> (N - reg_z - 1)) & frac64_z) != 0;
                        bits_more =
                            ((0x_7FFF_FFFF_FFFF_FFFF_u64 >> (N - reg_z - 1)) & frac64_z) != 0;
                        frac_z &= Self::mask();
                    } else if frac64_z > 0 {
                        frac_z = 0;
                        bits_more = true;
                    }
                    if (reg_z == (N - 2)) && (exp_z != 0) {
                        bit_n_plus_one = true;
                        exp_z = 0;
                    }
                } else {
                    regime = if reg_sz {
                        regime & Self::mask()
                    } else {
                        regime << (32 - N)
                    };
                    exp_z = 0;
                    frac_z = 0;
                }

                exp_z <<= 29 - reg_z;

                let mut u_z = Self::pack_to_ui(regime, exp_z as u32, frac_z);

                if bit_n_plus_one {
                    u_z += (((u_z >> (32 - N)) & 1) | (bits_more as u32)) << (32 - N);
                }
                u_z
            };
            Self::from_bits(u32_with_sign(u_z, sign_z))
        }
    }

    #[inline]
    pub const fn round(p_a: Self) -> Self {
        let mut mask = 0x_2000_0000_u32;
        let mut scale = 0_u32;

        let u_a: u32;

        let mut ui_a = p_a.to_bits();
        let sign = (ui_a & 0x_8000_0000) != 0;

        // sign is True if pA > NaR.
        if sign {
            ui_a = ui_a.wrapping_neg();
        } // A is now |A|.
        if ui_a <= 0x_3000_0000 {
            // 0 <= |pA| <= 1/2 rounds to zero.
            return Self::ZERO;
        } else if ui_a < 0x_4800_0000 {
            // 1/2 < x < 3/2 rounds to 1.
            u_a = 0x_4000_0000;
        } else if ui_a <= 0x_5400_0000 {
            // 3/2 <= x <= 5/2 rounds to 2.
            u_a = 0x_5000_0000;
        } else if ui_a >= 0x_7FE8_0000 {
            // If |A| is 0x7FE800000 (4194304) (posit is pure integer value), leave it unchanged.
            if N > 8 {
                return p_a; // This also takes care of the NaR case, 0x80000000.
            } else {
                let bit_n_plus_one = ((0x_8000_0000_u32 >> N) & ui_a) != 0;
                let tmp = (0x_7FFF_FFFF_u32 >> N) & ui_a; //bitsMore
                let bit_last = (0x_8000_0000_u32 >> (N - 1)) & ui_a;
                if bit_n_plus_one && ((bit_last | tmp) != 0) {
                    ui_a += bit_last;
                }
                u_a = ui_a;
            }
        } else {
            // 34% of the cases, we have to decode the posit.

            while (mask & ui_a) != 0 {
                scale += 2;
                mask >>= 1;
            }

            mask >>= 1;
            if (mask & ui_a) != 0 {
                scale += 1;
            }
            mask >>= scale;

            //the rest of the bits
            let bit_last = (ui_a & mask) != 0;
            mask >>= 1;
            let mut tmp = ui_a & mask;
            let bit_n_plus_one = tmp != 0;
            ui_a ^= tmp; // Erase the bit, if it was set.
            tmp = ui_a & (mask - 1); // this is actually bits_more

            ui_a ^= tmp;

            if bit_n_plus_one && (((bit_last as u32) | tmp) != 0) {
                ui_a += mask << 1;
            }
            u_a = ui_a;
        }
        Self::from_bits(u32_with_sign(u_a, sign))
    }
}