use core::mem;
mod convert;
mod math;
mod ops;
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Hash)]
pub struct P16E1(i16);
pub const EPSILON: P16E1 = P16E1::new(0x_100);
pub const MIN: P16E1 = P16E1::new(-0x_7FFF);
pub const MIN_POSITIVE: P16E1 = P16E1::new(0x_1);
pub const MAX: P16E1 = P16E1::new(0x_7FFF);
pub const NAN: P16E1 = P16E1::new(-0x_8000);
pub const INFINITY: P16E1 = P16E1::new(-0x_8000);
impl P16E1 {
#[inline]
pub const fn new(i: i16) -> Self {
P16E1(i)
}
#[inline]
pub fn from_bits(v: u16) -> Self {
unsafe { mem::transmute(v) }
}
#[inline]
pub fn to_bits(self) -> u16 {
unsafe { mem::transmute(self) }
}
#[inline]
pub fn abs(self) -> Self {
let i = self.to_bits() as i16;
Self::from_bits((if i < 0 { -i } else { i }) as u16)
}
#[inline]
pub fn is_nan(self) -> bool {
self == NAN
}
#[inline]
pub fn is_infinite(self) -> bool {
self == INFINITY
}
#[inline]
pub fn is_finite(self) -> bool {
!self.is_nan()
}
#[inline]
pub fn to_degrees(self) -> P16E1 {
const PIS_IN_180: P16E1 = P16E1::new(0x_7729);
self * PIS_IN_180
}
#[inline]
pub fn to_radians(self) -> P16E1 {
const PIS_O_180: P16E1 = P16E1::new(0x_0878);
self * PIS_O_180
}
#[inline]
pub fn max(self, other: Self) -> Self {
if self.is_nan() || (self < other) {
other
} else {
self
}
}
#[inline]
pub fn min(self, other: Self) -> Self {
if other.is_nan() || (self < other) {
self
} else {
other
}
}
}
impl P16E1 {
#[inline]
pub(crate) fn sign_ui(a: u16) -> bool {
(a & 0x_8000) != 0
}
#[inline]
fn sign_reg_ui(a: u16) -> bool {
(a & 0x_4000) != 0
}
#[inline]
fn pack_to_ui(regime: u16, reg_a: u8, exp_a: u16, frac_a: u16) -> u16 {
regime + (exp_a.wrapping_shl(13_u16.wrapping_sub(reg_a as u16) as u32)) + frac_a
}
#[inline]
pub(crate) fn separate_bits(bits: u16) -> (i8, i8, u16) {
let (k, tmp) = Self::separate_bits_tmp(bits);
(k, (tmp >> 14) as i8, (tmp | 0x4000))
}
#[inline]
pub(crate) fn separate_bits_tmp(bits: u16) -> (i8, u16) {
let mut k = 0;
let mut tmp = bits << 2;
if Self::sign_reg_ui(bits) {
while (tmp & 0x_8000) != 0 {
k += 1;
tmp <<= 1;
}
} else {
k = -1;
while (tmp & 0x_8000) == 0 {
k -= 1;
tmp <<= 1;
}
tmp &= 0x7FFF;
}
(k, tmp)
}
#[inline]
fn calculate_scale(mut bits: u16) -> (u16, u16) {
let mut scale = 0_u16;
bits -= 0x4000; while (0x2000 & bits) != 0 {
scale += 2; bits = (bits - 0x2000) << 1; }
bits <<= 1; if (0x2000 & bits) != 0 {
scale += 1; }
(scale, bits)
}
#[inline]
fn calculate_regime(k: i8) -> (u16, bool, u8) {
let reg;
if k < 0 {
reg = (-k) as u8;
(if reg > 15 { 0 } else { 0x4000_u16 >> reg }, false, reg)
} else {
reg = (k + 1) as u8;
(
if reg > 15 {
0x7FFF
} else {
0x7FFF - (0x7FFF >> reg)
},
true,
reg,
)
}
}
}
#[derive(Clone, Copy)]
pub struct Q16E1(i64, u64);
impl Q16E1 {
#[inline]
pub const fn new(i: i64, u: u64) -> Self {
Q16E1(i, u)
}
#[inline]
pub fn from_bits(v: [u64; 2]) -> Self {
unsafe { mem::transmute(v) }
}
#[inline]
pub fn to_bits(self) -> [u64; 2] {
unsafe { mem::transmute(self) }
}
#[inline]
pub fn is_zero(self) -> bool {
self.to_bits() == [0, 0]
}
#[inline]
pub fn is_nan(self) -> bool {
self.to_bits() == [0x8000_0000, 0]
}
}
impl num_traits::Zero for P16E1 {
fn zero() -> Self {
P16E1::new(0)
}
fn is_zero(&self) -> bool {
*self == P16E1::new(0)
}
}
impl num_traits::One for P16E1 {
fn one() -> Self {
P16E1::new(0x_4000)
}
fn is_one(&self) -> bool {
*self == P16E1::new(0x_4000)
}
}
impl num_traits::Num for P16E1 {
type FromStrRadixErr = num_traits::ParseFloatError;
fn from_str_radix(src: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
Ok(Self::from(f64::from_str_radix(src, radix)?))
}
}
impl core::str::FromStr for P16E1 {
type Err = core::num::ParseFloatError;
#[inline]
fn from_str(src: &str) -> Result<Self, core::num::ParseFloatError> {
Ok(Self::from(f64::from_str(src)?))
}
}
impl num_traits::ToPrimitive for P16E1 {
fn to_i64(&self) -> Option<i64> {
Some(i64::from(*self))
}
fn to_u64(&self) -> Option<u64> {
Some(u64::from(*self))
}
fn to_f64(&self) -> Option<f64> {
Some(f64::from(*self))
}
}
impl num_traits::NumCast for P16E1 {
fn from<N: num_traits::ToPrimitive>(n: N) -> Option<Self> {
n.to_f64().map(|x| x.into())
}
}
use crate::MathConsts;
impl MathConsts for P16E1 {
const E: Self = Self::new(0x_55bf);
const FRAC_1_PI: Self = Self::new(0x_245f);
const FRAC_1_SQRT_2: Self = Self::new(0x_36a1);
const FRAC_2_PI: Self = Self::new(0x_345f);
const FRAC_2_SQRT_PI: Self = Self::new(0x_420e);
const FRAC_PI_2: Self = Self::new(0x_4922);
const FRAC_PI_3: Self = Self::new(0x_40c1);
const FRAC_PI_4: Self = Self::new(0x_3922);
const FRAC_PI_6: Self = Self::new(0x_30c1);
const FRAC_PI_8: Self = Self::new(0x_2922);
const LN_10: Self = Self::new(0x_526c);
const LN_2: Self = Self::new(0x_362e);
const LOG10_E: Self = Self::new(0x_2bcb);
const LOG2_E: Self = Self::new(0x_2344);
const PI: Self = Self::new(0x_5922);
const SQRT_2: Self = Self::new(0x_46a1);
const LOG2_10: Self = Self::new(0x_5a93);
const LOG10_2: Self = Self::new(0x_2344);
}