1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
use std::fmt;
use arrayvec::ArrayVec;
use bitvec::prelude::*;
use nalgebra::*;
use crate::{Atom, Axis, Exact, Vertex, VertexSet, ANOMALOUS_CONFIGURATIONS, SYMMETRIES};
/// A `Face` represents a combination of four triangles around a central vertex:
///
/// *---*
/// |\2/|
/// |3*1|
/// |/0\|
/// * - *
///
/// Where a * is a vertex and anything else is empty space. These four triangles make up the bulk of
/// how we mesh two atoms together: combining two atoms' adjacent faces is as simple as XORing the
/// bits of their faces together. We immediately zero out any shared triangles.
///
/// A `Face` will only be non-empty if its corresponding atom has more than two vertices on its
/// plane; its bits represent strictly filled spaces, not lines. a `Face` which does not actually
/// have any triangles on its surface will not contain any set bits.
///
/// Faces are constructed in a right-handed coordinate system according to the axis of the face of
/// the atom from which they were constructed; this means that for example, if we're looking at the
/// +X axis of an atom, then to the "right" ([`FACE_POS_X`]) will be `-Z` (atom vertices with
/// unset [`Z_AXIS`] bits.)
///
/// *Parallel faces share the same layout with respect to their other axes.* For example, a face on
/// the `-Z` axis will have all of its vertices parallel w/ a face on the `Z` axis; the vertices are
/// stored in the same order.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Face {
bits: BitArray<Lsb0, [u8; 1]>,
}
impl Face {
/// Calculate an initial `Face` object from a vertex set and an axis corresponding to the face
/// we want to construct on.
#[inline]
pub fn new(vertices: VertexSet, axis: Axis) -> Self {
let face_set = axis.to_face_set();
let mut face_verts = BitArray::<Lsb0, [u8; 1]>::zeroed();
for (i, v) in face_set.vertices().enumerate() {
face_verts.set(i, vertices.contains(v));
}
let mut bits = BitArray::zeroed();
// We either have exactly all of the face triangles, or half of them, or none of them.
if face_verts.count_ones() == 4 {
bits.set_all(true);
} else if face_verts.count_ones() == 3 {
// All of our sides follow the same Z pattern, which quite literally looks like a Z. So,
// we can use the same logic in all cases. The Z starts at the bottom right, with vertex
// 0; then goes to vertex 1, vertex 2, and vertex 3. We will number these vertices in
// the way described in the `Face` documentation:
// v3 v2
// *---*
// |\2/|
// |3*1|
// |/0\|
// * - *
// v1 v0
//
// Given that, for any unset vertex, we know we have the right triangle composed of all
// the other vertices - which encloses exactly two of the four face triangles:
// - Vertex 0 unset - triangles formed by v123 (triangles 2 and 3)
// - Vertex 1 unset - triangles formed by v023 (triangles 1 and 2)
// - Vertex 2 unset - triangles formed by v013 (triangles 0 and 3)
// - Vertex 3 unset - triangles formed by v012 (triangles 0 and 1)
// Which bit is *not* set?
let unset = face_verts.first_zero().unwrap();
match unset {
0 => bits[0..4].copy_from_bitslice(bits![Lsb0, u8; 0, 0, 1, 1]),
1 => bits[0..4].copy_from_bitslice(bits![Lsb0, u8; 0, 1, 1, 0]),
2 => bits[0..4].copy_from_bitslice(bits![Lsb0, u8; 1, 0, 0, 1]),
3 => bits[0..4].copy_from_bitslice(bits![Lsb0, u8; 1, 1, 0, 0]),
_ => unreachable!(),
}
}
bits[4..7].copy_from_bitslice(&axis.to_bits()[0..3]);
Self { bits }
}
/// Construct an empty face on a given axis.
///
/// Atoms can't be empty, so this is useful if you need to just conjure an empty face out of
/// nowhere.
#[inline]
pub fn empty(axis: Axis) -> Self {
let mut bits = BitArray::zeroed();
bits[4..7].copy_from_bitslice(&axis.to_bits()[0..3]);
Self { bits }
}
/// The axis which this face was constructed for.
#[inline]
pub fn axis(self) -> Axis {
let mut axis_bits = BitArray::zeroed();
axis_bits[0..3].copy_from_bitslice(&self.bits[4..7]);
unsafe { Axis::from_u8_unchecked(axis_bits.into_inner()) }
}
/// Join two opposing faces. This mutually removes any triangles which are shared between the
/// faces. Panicks if called on faces which are not made from opposing axes (where opposing axes
/// are pairs like `PosX` vs `NegX`, etc.)
#[inline]
pub fn join(&mut self, other: &mut Self) {
assert!(
self.axis() == other.axis().opposite(),
"cannot join faces with non-opposing axes!"
);
let mut xord = self.bits;
xord[0..4] ^= other.bits[0..4].iter().by_val();
self.bits[0..4] &= xord[0..4].iter().by_val();
other.bits[0..4] &= xord[0..4].iter().by_val();
}
/// Iterate over the exactly one or two facets of this face.
#[inline]
pub fn facets(self) -> impl Iterator<Item = HullFacet> {
// There are sixteen possible configurations of the facets of a `Face`. Let's count:
// - (1) No facet bits (no triangle :C)
// - (4) One facet bit (one smol triangle)
// - (6) Two facet bits (two possible classes of subconfigurations)
// - (2) Two adjacent facet bits (one beeg triangle)
// - (4) Two non-adjacent facet bits (two smol triangle)
// - (4) Three facet bits (one beeg triangle, one smol triangle)
// - (1) All facet bits (one square)
//
// We handle these via a brute-force lookup, as there are only sixteen of them.
// Mask off the index to get our first four bits.
let index = self.bits.into_inner()[0] & 0b1111;
let axis = self.axis();
let mut face_verts: ArrayVec<Vertex, 4> = axis.to_face_set().into_iter().collect();
// Swap the 0th and 1st vertices to get the vertices to match our Z pattern. This now means
// that if we have some facet index `f`, the vertices that make up its edge are now
// `face_verts[f]`, `face_verts[f + 1]` (with "wrapping" behavior at the end of the array.)
face_verts.swap(0, 1);
let center = axis.to_face_center();
let square = || {
let mut verts = face_verts
.clone()
.into_inner()
.unwrap()
.map(Vertex::to_exact);
// Winding order.
if self.axis().requires_winding_flip() {
verts.swap(1, 3);
}
HullFacet::Rectangle(verts)
};
// beeg triangle: from a run of two adjacent facets
let beeg = |start_facet: usize| {
let v1 = start_facet;
let v2 = (v1 + 1) & 0b11;
let v3 = (v2 + 1) & 0b11;
// flip winding order
if self.axis().requires_winding_flip() {
HullFacet::Triangle(
[face_verts[v2], face_verts[v1], face_verts[v3]].map(Vertex::to_exact),
)
} else {
HullFacet::Triangle(
[face_verts[v1], face_verts[v2], face_verts[v3]].map(Vertex::to_exact),
)
}
};
let smol = |facet: usize| {
let v1 = facet;
let v2 = (v1 + 1) & 0b11;
// flip winding order.
if self.axis().requires_winding_flip() {
HullFacet::Triangle([center, face_verts[v2].to_exact(), face_verts[v1].to_exact()])
} else {
HullFacet::Triangle([center, face_verts[v1].to_exact(), face_verts[v2].to_exact()])
}
};
let av = |slice: &[HullFacet]| slice.iter().copied().collect::<ArrayVec<HullFacet, 2>>();
let facets = match index {
// (0) No facet bits.
0b0000 => av(&[]),
// (1) One facet bit (one smol triangle).
0b0001 => av(&[smol(0)]),
// (2) One facet bit (one smol triangle).
0b0010 => av(&[smol(1)]),
// (3) Two adjacent facet bits (one beeg triangle).
0b0011 => av(&[beeg(0)]),
// (4) One facet bit (one smol triangle).
0b0100 => av(&[smol(2)]),
// (5) Two non-adjacent facet bits (two smol triangle).
0b0101 => av(&[smol(0), smol(2)]),
// (6) Two adjacent facet bits (one beeg triangle).
0b0110 => av(&[beeg(1)]),
// (7) Three facet bits (one beeg one smol).
0b0111 => av(&[beeg(0), smol(2)]),
// (8) One facet bit (one smol triangle).
0b1000 => av(&[smol(3)]),
// (9) Two adjacent facet bits (one beeg triangle).
0b1001 => av(&[beeg(3)]),
// (10) Two non-adjacent facet bits (two smol triangle).
0b1010 => av(&[smol(1), smol(3)]),
// (11) Three facet bits (one beeg one smol).
0b1011 => av(&[beeg(0), smol(3)]),
// (12) Two adjacent facet bits (one beeg triangle).
0b1100 => av(&[beeg(2)]),
// (13) Three facet bits (one beeg one smol).
0b1101 => av(&[beeg(2), smol(0)]),
// (14) Three facet bits (one beeg one smol).
0b1110 => av(&[beeg(1), smol(3)]),
// (15) All facet bits (one square).
0b1111 => av(&[square()]),
// Not a 4-bit index.
_ => unreachable!(),
};
facets.into_iter()
}
}
/// Triangles which lie on the planes of the faces of an atom are taken care of by `Face`s. However,
/// we still need to complete the picture by adding back in any missing facets which lie "inside"
/// that cube (and not on its faces.) There are 8 ways to choose 3 triangles from eight
/// vertices. Of these 56 possible triangles, there are 4 times 24 which exist on the faces of the
/// cube, and which are therefore superseded by the `Face` calculations. We now have 32 triangles
/// remaining. Of these, we have six "symmetry planes" of the cube; these are the planes that run
/// through an edge each, and both contain four vertices. Like the face quads, these contain 24
/// possible triangles, which leaves us with a total of 8 anomalous configurations. To sum up (pun
/// intended):
///
/// - 56 total triangles (8 choose 3). (Given a quad, there are four triangles in it; divide it in
/// half, then flip the edge to get the other two.)
/// - 6 quads in cube faces = 24 triangle configurations
/// - 6 quads in symmetry planes = 24 triangle configurations
/// - 8 remaining triangles (anomalous configurations)
///
/// 32 of these configurations are ones we're interested in. 24 of these can be enumerated by
/// enumerating the symmetry planes, and at the same time can be collapsed into a quad in order to
/// remain as simplified as possible (or we can triangulate them for good measure.) The remaining 8
/// are more troublesome, but can be enumerated as sets where no vertex shares an edge. How can we
/// know this? Let's think through it.
///
/// Suppose a vertex shares an edge with another vertex in this triangle. There are three other
/// edges on which to choose the last vertex. Two of them would put the triangle on the faces of the
/// cube. The remaining option will place the triangle on one of the symmetry planes.
///
/// So, it seems obvious that the remaining configurations are those where the vertices don't even
/// share an edge, let alone a face. The number of these is only eight, so we can enumerate them
/// (see [`ANOMALOUS_CONFIGURATIONS`].) These are simple to deal with as well, as they can never be
/// collapsed into a quad, at least not within a single `Atom`, because these are the groups of
/// three vertices which are alone on their plane within the cube.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Hash)]
pub struct InteriorHull {
facets: ArrayVec<HullFacet, 4>,
}
impl InteriorHull {
/// Generate the interior hull of an atom.
#[inline]
pub fn new(atom: Atom) -> Self {
generate_interior_hull(atom.vertices)
}
/// Return an iterator over all facets on the interior hull.
#[inline]
pub fn facets(&self) -> impl Iterator<Item = HullFacet> {
self.facets.clone().into_iter()
}
}
#[inline]
fn generate_interior_hull(atom: VertexSet) -> InteriorHull {
let mut facets = ArrayVec::new();
let centroid = atom.centroid();
// First, check all of the symmetry planes; extract all vertices of each symmetry plane. If
// there are more than two vertices, we found a potentially on-hull intersection. Try it as a
// square; if it doesn't work, break it into triangles and see if we can make any of the pieces
// fit.
//
// Once we're done with the symmetry planes, swap to the anomalous configurations.
//
// This is probably actually fast enough to do in real-time?
for intersection in SYMMETRIES
.into_iter()
.chain(ANOMALOUS_CONFIGURATIONS)
.map(|configuration| configuration & atom)
.filter(|intersection| intersection.len() >= 3)
{
if intersection.len() > 2 && atom.is_on_hull(intersection) {
let mut facet = HullFacet::from_vertex_set(intersection);
facet.match_winding_to_centroid(¢roid);
facets.push(facet);
} else if intersection.len() == 4 {
// Permute the triangles and try them all.
let mut vs = intersection.vertices();
let tris: [Vertex; 4] = [
vs.next().unwrap(),
vs.next().unwrap(),
vs.next().unwrap(),
vs.next().unwrap(),
];
// Try:
// - 0, 1, 2
// - 0, 1, 3
// - 0, 2, 3
// - 1, 2, 3
//
// Since we just ruled out the combination of both, only one could be on the hull.
let tri_lists = [
[tris[0], tris[1], tris[2]],
[tris[0], tris[1], tris[3]],
[tris[0], tris[2], tris[3]],
[tris[1], tris[2], tris[3]],
];
for tri_list in tri_lists {
let tri_set = tri_list.into_iter().collect();
if atom.is_on_hull(tri_set) {
let mut facet = HullFacet::from_vertex_set(tri_set);
facet.match_winding_to_centroid(¢roid);
facets.push(facet);
// Only one can be on the hull!
break;
}
}
}
}
InteriorHull { facets }
}
/// Facets which are on an atom's convex hull and which exist on the six "face planes" of the cube,
/// and which may be clipped during `join` operations.
///
/// Internally, this is a set of six [`Face`]s.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ExteriorHull {
faces: ArrayVec<Face, 6>,
}
impl ExteriorHull {
/// Calculate the initial exterior hull of an atom (the exterior hull before any facets are
/// clipped out due to join operations.)
#[inline]
pub fn new(atom: Atom) -> Self {
let faces = Axis::generator()
.map(|axis| Face::new(atom.to_set(), axis))
.collect();
Self { faces }
}
/// Join two exterior hulls, along a given axis. The axis is assumed to be relative to `self`,
/// with the chosen face to join on the other hull given by the opposite (negated) axis.
#[inline]
pub fn join(&mut self, axis: Axis, other: &mut ExteriorHull) {
let self_axis = axis;
let other_axis = axis.opposite();
let self_face = &mut self.faces[self_axis.to_index()];
let other_face = &mut other.faces[other_axis.to_index()];
self_face.join(other_face);
}
/// Iterate over all remaining facets of the exterior hull.
#[inline]
pub fn facets(&self) -> impl Iterator<Item = HullFacet> + '_ {
self.faces.iter().copied().flat_map(Face::facets)
}
/// Directly set a face of the exterior hull.
#[inline]
pub fn set_face(&mut self, face: Face) {
self.faces[face.axis().to_index()] = face;
}
/// Get a face of the exterior hull.
#[inline]
pub fn face(&self, axis: Axis) -> &Face {
&self.faces[axis.to_index()]
}
}
/// The "compound hull" of an atom is its convex hull, possibly with pieces missing from its
/// exterior.
///
/// It comprises the union of two sets:
/// - The "interior hull" ([`InteriorHull`]), which comprises the convex hull of the atom with all
/// facets on the faces of the unit cube removed.
/// - The "exterior hull" ([`ExteriorHull`]), which begins by comprising the convex hull of the atom
/// consisting only of faces on the faces of the unit cube, and which may have facets subtracted
/// from it during `join` operations.
///
/// In the end, the interior hull of an atom should never change; however, the exterior hull may
/// change depending on adjacent atoms.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Hash)]
pub struct CompoundHull {
interior: InteriorHull,
exterior: ExteriorHull,
}
impl CompoundHull {
/// Calculate the initial compound hull (before join operations) of an atom.
#[inline]
pub fn new(atom: Atom) -> Self {
Self {
interior: InteriorHull::new(atom),
exterior: ExteriorHull::new(atom),
}
}
/// Get the interior component of the hull.
#[inline]
pub fn interior(&self) -> &InteriorHull {
&self.interior
}
/// Get the exterior component of the hull.
#[inline]
pub fn exterior(&self) -> &ExteriorHull {
&self.exterior
}
/// Get the exterior component of the hull, mutably.
#[inline]
pub fn exterior_mut(&mut self) -> &mut ExteriorHull {
&mut self.exterior
}
/// Join the exterior hulls of two compound hulls.
///
/// See [`ExteriorHull::join`].
#[inline]
pub fn join_exteriors(&mut self, axis: Axis, other: &mut Self) {
self.exterior.join(axis, &mut other.exterior)
}
/// Iterate over all facets on this hull.
#[inline]
pub fn facets(&self) -> impl Iterator<Item = HullFacet> + '_ {
self.interior.facets().chain(self.exterior.facets())
}
}
/// A facet of a hull is either a rectangle or a triangle.
///
/// Facets should follow a CCW winding order for both rectangles and triangles. Compound hulls will
/// never produce a set of facets from a single atom which can be simplified by joining triangles
/// into squares.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Hash)]
pub enum HullFacet {
/// A hull facet which is a triangle.
Triangle([Exact; 3]),
/// A hull facet which is a rectangle.
Rectangle([Exact; 4]),
}
impl fmt::Debug for HullFacet {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Triangle([a, b, c]) => write!(f, "Triangle([{}, {}, {}])", a.0, b.0, c.0),
Self::Rectangle([a, b, c, d]) => {
write!(f, "Rectangle([{}, {}, {}, {}])", a.0, b.0, c.0, d.0)
}
}
}
}
impl HullFacet {
/// Find the facet's normal.
#[inline]
pub fn normal(self) -> UnitVector3<f32> {
let (Self::Triangle([a, b, c]) | Self::Rectangle([a, b, c, _])) = self;
let (p0, p1, p2) = (a.to_f32(), b.to_f32(), c.to_f32());
let v01 = p1 - p0;
let v02 = p2 - p0;
UnitVector3::new_normalize(v01.cross(&v02))
}
/// Test if this facet's normal faces outwards from a given point, such as the centroid of the
/// vertex set. Useful for asserting that a facet is properly wound CCW.
#[inline]
pub fn is_normal_outwards_with_respect_to_point(self, p0: &Point3<f32>) -> bool {
let (Self::Triangle([a, _, _]) | Self::Rectangle([a, _, _, _])) = self;
let p1 = a.to_f32();
let n = self.normal();
let v = p1 - p0;
n.dot(&v) > 0.
}
/// Given a centroid, ensure that the winding order of this facet produces a normal that faces
/// outwards from it.
#[inline]
pub fn match_winding_to_centroid(&mut self, centroid: &Point3<f32>) {
if !self.is_normal_outwards_with_respect_to_point(centroid) {
self.flip_winding();
}
}
/// Flip the vertex winding of this hull facet.
#[inline]
pub fn flip_winding(&mut self) {
match self {
Self::Triangle([a, b, _]) => std::mem::swap(a, b),
Self::Rectangle([_, b, _, d]) => std::mem::swap(b, d),
}
}
/// Construct a new hull facet from a vertex set.
#[inline]
pub fn from_vertex_set(vs: VertexSet) -> Self {
match vs.len() {
3 => HullFacet::Triangle(
vs.vertices()
.map(Vertex::to_exact)
.collect::<ArrayVec<_, 3>>()
.into_inner()
.unwrap(),
),
4 => {
let mut array = vs
.vertices()
.map(Vertex::to_exact)
.collect::<ArrayVec<_, 4>>()
.into_inner()
.unwrap();
// Fix "Z" pattern.
array.swap(0, 1);
HullFacet::Rectangle(array)
}
_ => unreachable!("all facets must have 3 or 4 vertices!"),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{vertex_set, FACES};
use maplit::hashset;
use std::collections::HashSet;
fn hull(vertex_set: VertexSet) -> CompoundHull {
Atom::new(vertex_set).compound_hull()
}
macro_rules! bad_atoms {
($($name:ident, $set:expr;)*) => {$(
#[test]
#[should_panic]
fn $name() {
Atom::new($set);
}
)*};
}
bad_atoms! {
bad_atom_f0, FACES[0];
bad_atom_f1, FACES[1];
bad_atom_f2, FACES[2];
bad_atom_f3, FACES[3];
bad_atom_f4, FACES[4];
bad_atom_f5, FACES[5];
bad_atom_s0, SYMMETRIES[0];
bad_atom_s1, SYMMETRIES[1];
bad_atom_s2, SYMMETRIES[2];
bad_atom_s3, SYMMETRIES[3];
bad_atom_s4, SYMMETRIES[4];
bad_atom_s5, SYMMETRIES[5];
bad_atom_a0, ANOMALOUS_CONFIGURATIONS[0];
bad_atom_a1, ANOMALOUS_CONFIGURATIONS[1];
bad_atom_a2, ANOMALOUS_CONFIGURATIONS[2];
bad_atom_a3, ANOMALOUS_CONFIGURATIONS[3];
bad_atom_a4, ANOMALOUS_CONFIGURATIONS[4];
bad_atom_a5, ANOMALOUS_CONFIGURATIONS[5];
bad_atom_a6, ANOMALOUS_CONFIGURATIONS[6];
bad_atom_a7, ANOMALOUS_CONFIGURATIONS[7];
}
#[test]
fn kyube() {
assert_eq!(
hull(vertex_set![1, 1, 1, 1, 1, 1, 1, 1])
.interior()
.facets()
.count(),
0
);
assert_eq!(
hull(vertex_set![1, 1, 1, 1, 1, 1, 1, 1])
.exterior()
.facets()
.count(),
6
);
}
#[test]
fn tetrahedron() {
let hull = hull(vertex_set![0, 1, 0, 0, 1, 1, 0, 1]);
assert_eq!(hull.interior().facets().count(), 1);
assert_eq!(hull.exterior().facets().count(), 3,);
}
#[test]
fn fuckin_weird_dude() {
let atom = Atom::new(vertex_set![0, 1, 1, 0, 1, 0, 0, 1]);
let hull = atom.compound_hull();
println!("atom: {:#}", atom.to_set());
for axis in Axis::generator() {
println!(
"axis: {:?}, set: {:#}",
axis,
atom.to_set() & axis.to_face_set()
);
}
for face in &hull.exterior().faces {
println!("axis/face: {:?}/{:?}", face.axis(), face);
for facet in face.facets() {
println!("\tfacet: {:?}", facet);
}
}
println!("interior facets:");
for facet in hull.interior().facets() {
println!("\tfacet: {:?}", facet);
}
assert_eq!(hull.interior().facets().count(), 4);
assert_eq!(hull.exterior().facets().count(), 0);
}
#[test]
fn join_m() {
fn v(n: u8) -> Exact {
Vertex::from_u8(n).to_exact()
}
let nz = Atom::new(vertex_set![1, 1, 0, 0, 1, 1, 1, 1]);
let pz = Atom::new(vertex_set![1, 1, 1, 1, 1, 1, 0, 0]);
let mut nz_hull = nz.compound_hull();
let mut pz_hull = pz.compound_hull();
nz_hull.join_exteriors(Axis::PosZ, &mut pz_hull);
assert_eq!(nz_hull.interior().facets().count(), 1);
assert_eq!(pz_hull.interior().facets().count(), 1);
assert_eq!(nz_hull.exterior().facets().count(), 4);
assert_eq!(pz_hull.exterior().facets().count(), 4);
let nz_ext_facet_set = nz_hull.exterior().facets().collect::<HashSet<HullFacet>>();
let pz_center = Exact(Point3::new(1, 1, 2));
assert_eq!(
nz_ext_facet_set,
hashset! {
HullFacet::Triangle([v(4), v(0), v(6)]),
HullFacet::Triangle([pz_center, v(5), v(7)]),
HullFacet::Rectangle([v(1), v(0), v(4), v(5)]),
HullFacet::Rectangle([v(5), v(4), v(6), v(7)]),
}
);
let pz_ext_facet_set = pz_hull.exterior().facets().collect::<HashSet<HullFacet>>();
let nz_center = Exact(Point3::new(1, 1, 0));
assert_eq!(
pz_ext_facet_set,
hashset! {
HullFacet::Triangle([v(3), v(1), v(5)]),
HullFacet::Triangle([nz_center, v(0), v(2)]),
HullFacet::Rectangle([v(1), v(3), v(2), v(0)]),
HullFacet::Rectangle([v(1), v(0), v(4), v(5)]),
}
);
}
#[test]
fn n_valid_atoms() {
assert_eq!(Atom::generator().count(), 127);
}
#[test]
fn interior_winding() {
for (_i, atom) in Atom::generator().enumerate() {
let centroid = atom.to_set().centroid();
// println!("atom [{:03}] w/ centroid {} {:#}", _i, centroid, atom);
for (_j, facet) in atom.compound_hull().interior().facets().enumerate() {
// println!("facet [{:02}]: {:?}", _j, facet);
assert!(facet.is_normal_outwards_with_respect_to_point(¢roid));
}
}
}
#[test]
fn exterior_winding() {
for (_i, atom) in Atom::generator().enumerate() {
let centroid = atom.to_set().centroid();
// println!("atom [{:03}] w/ centroid {} {:#}", _i, centroid, atom);
for (_j, facet) in atom.compound_hull().exterior().facets().enumerate() {
// println!("facet [{:02}]: {:?}", _j, facet);
assert!(facet.is_normal_outwards_with_respect_to_point(¢roid));
}
}
}
}