soa-rs 0.8.1

A Vec-like structure-of-arrays container
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
use crate::{
    iter_raw::IterRaw, AsMutSlice, AsSlice, IntoIter, Iter, IterMut, Slice, SliceMut, SliceRef,
    SoaRaw, Soars,
};
use std::{
    borrow::{Borrow, BorrowMut},
    cmp::Ordering,
    fmt::{self, Debug, Formatter},
    hash::{Hash, Hasher},
    marker::PhantomData,
    mem::{needs_drop, size_of, ManuallyDrop},
    ops::{Deref, DerefMut},
    ptr::NonNull,
};

/// A growable array type that stores the values for each field of `T`
/// contiguously.
///
/// The design for SoA aligns closely with [`Vec`]:
/// - Overallocates capacity to provide O(1) amortized insertion
/// - Does not allocate until elements are added
/// - Never deallocates memory unless explicitly requested
/// - Uses `usize::MAX` as the capacity for zero-sized types
///
/// See the top-level [`soa_rs`] docs for usage examples.
///
/// [`soa_rs`]: crate
pub struct Soa<T>
where
    T: Soars,
{
    pub(crate) cap: usize,
    pub(crate) slice: Slice<T, ()>,
    pub(crate) len: usize,
}

impl<T> Soa<T>
where
    T: Soars,
{
    /// The capacity of the initial allocation. This is an optimization to avoid
    /// excessive reallocation for small array sizes.
    const SMALL_CAPACITY: usize = 4;

    /// Constructs a new, empty `Soa<T>`.
    ///
    /// The container will not allocate until elements are pushed onto it.
    ///
    /// # Examples
    /// ```
    /// # use soa_rs::{Soa, Soars};
    /// # #[derive(Soars, Copy, Clone)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo;
    /// let mut soa = Soa::<Foo>::new();
    /// ```
    pub fn new() -> Self {
        Self {
            cap: if size_of::<T>() == 0 { usize::MAX } else { 0 },
            slice: Slice::empty(),
            len: 0,
        }
    }

    /// Construct a new, empty `Soa<T>` with at least the specified capacity.
    ///
    /// The container will be able to hold `capacity` elements without
    /// reallocating. If the `capacity` is 0, the container will not allocate.
    /// Note that although the returned vector has the minimum capacity
    /// specified, the vector will have a zero length. The capacity will be as
    /// specified unless `T` is zero-sized, in which case the capacity will be
    /// `usize::MAX`.
    ///
    /// # Examples
    /// ```
    /// # use soa_rs::{Soa, Soars};
    /// #[derive(Soars)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// struct Foo(u8, u8);
    ///
    /// let mut soa = Soa::<Foo>::with_capacity(10);
    /// assert_eq!(soa.len(), 0);
    /// assert_eq!(soa.capacity(), 10);
    ///
    /// // These pushes do not reallocate...
    /// for i in 0..10 {
    ///     soa.push(Foo(i, i));
    /// }
    /// assert_eq!(soa.len(), 10);
    /// assert_eq!(soa.capacity(), 10);
    ///
    /// // ...but this one does
    /// soa.push(Foo(11, 11));
    /// assert_eq!(soa.len(), 11);
    /// assert_eq!(soa.capacity(), 20);
    ///
    /// #[derive(Soars, Copy, Clone)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// struct Bar;
    ///
    /// // A SOA of a zero-sized type always over-allocates
    /// let soa = Soa::<Bar>::with_capacity(10);
    /// assert_eq!(soa.capacity(), usize::MAX);
    /// ```
    pub fn with_capacity(capacity: usize) -> Self {
        match capacity {
            0 => Self::new(),
            capacity => {
                if size_of::<T>() == 0 {
                    Self {
                        cap: usize::MAX,
                        slice: Slice::empty(),
                        len: 0,
                    }
                } else {
                    Self {
                        cap: capacity,
                        // SAFETY:
                        // - T is nonzero sized
                        // - capacity is nonzero
                        slice: Slice::with_raw(unsafe { T::Raw::alloc(capacity) }),
                        len: 0,
                    }
                }
            }
        }
    }

    /// Constructs a new `Soa<T>` with the given first element.
    ///
    /// This is mainly useful to get around type inference limitations in some
    /// situations, namely macros. Type inference can struggle sometimes due to
    /// dereferencing to an associated type of `T`, which causes Rust to get
    /// confused about whether, for example, `push`ing and element should coerce
    /// `self` to the argument's type.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let soa = Soa::with(Foo(10));
    /// assert_eq!(soa, soa![Foo(10)]);
    /// ```
    pub fn with(element: T) -> Self {
        let mut out = Self::new();
        out.push(element);
        out
    }

    /// Returns the total number of elements the container can hold without
    /// reallocating.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars};
    /// # #[derive(Soars)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = Soa::<Foo>::new();
    /// for i in 0..42 {
    ///     assert!(soa.capacity() >= i);
    ///     soa.push(Foo(i));
    /// }
    /// ```
    pub fn capacity(&self) -> usize {
        self.cap
    }

    /// Decomposes a `Soa<T>` into its raw components.
    ///
    /// Returns the raw pointer to the underlying data, the length of the vector (in
    /// elements), and the allocated capacity of the data (in elements). These
    /// are the same arguments in the same order as the arguments to
    /// [`Soa::from_raw_parts`].
    ///
    /// After calling this function, the caller is responsible for the memory
    /// previously managed by the `Soa`. The only way to do this is to convert the
    /// raw pointer, length, and capacity back into a Vec with the
    /// [`Soa::from_raw_parts`] function, allowing the destructor to perform the cleanup.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let soa = soa![Foo(1), Foo(2)];
    /// let (ptr, len, cap) = soa.into_raw_parts();
    /// let rebuilt = unsafe { Soa::<Foo>::from_raw_parts(ptr, len, cap) };
    /// assert_eq!(rebuilt, soa![Foo(1), Foo(2)]);
    /// ```
    pub fn into_raw_parts(self) -> (NonNull<u8>, usize, usize) {
        let me = ManuallyDrop::new(self);
        (me.raw().into_parts(), me.len, me.cap)
    }

    /// Creates a `Soa<T>` from a pointer, a length, and a capacity.
    ///
    /// # Safety
    ///
    /// This is highly unsafe due to the number of invariants that aren't
    /// checked. Given that many of these invariants are private implementation
    /// details of [`SoaRaw`], it is better not to uphold them manually. Rather,
    /// it only valid to call this method with the output of a previous call to
    /// [`Soa::into_raw_parts`].
    pub unsafe fn from_raw_parts(ptr: NonNull<u8>, length: usize, capacity: usize) -> Self {
        let raw = unsafe { T::Raw::from_parts(ptr, capacity) };
        Self {
            cap: capacity,
            slice: Slice::with_raw(raw),
            len: length,
        }
    }

    /// Appends an element to the back of a collection.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1), Foo(2)];
    /// soa.push(Foo(3));
    /// assert_eq!(soa, soa![Foo(1), Foo(2), Foo(3)]);
    /// ```
    pub fn push(&mut self, element: T) {
        self.maybe_grow();
        // SAFETY: After maybe_grow, the allocated capacity is greater than len
        unsafe {
            self.raw().offset(self.len).set(element);
        }
        self.len += 1;
    }

    /// Removes the last element from a vector and returns it, or [`None`] if it
    /// is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1), Foo(2), Foo(3)];
    /// assert_eq!(soa.pop(), Some(Foo(3)));
    /// assert_eq!(soa, soa![Foo(1), Foo(2)]);
    /// ```
    pub fn pop(&mut self) -> Option<T> {
        if self.len == 0 {
            None
        } else {
            self.len -= 1;
            // SAFETY: len points to at least one initialized item
            Some(unsafe { self.raw().offset(self.len).get() })
        }
    }

    /// Inserts an element at position `index`, shifting all elements after it
    /// to the right.
    ///
    /// # Panics
    ///
    /// Panics if `index > len`
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1), Foo(2), Foo(3)];
    /// soa.insert(1, Foo(4));
    /// assert_eq!(soa, soa![Foo(1), Foo(4), Foo(2), Foo(3)]);
    /// soa.insert(4, Foo(5));
    /// assert_eq!(soa, soa![Foo(1), Foo(4), Foo(2), Foo(3), Foo(5)]);
    /// ```
    pub fn insert(&mut self, index: usize, element: T) {
        assert!(index <= self.len, "index out of bounds");
        self.maybe_grow();
        // SAFETY: After the bounds check and maybe_grow, index is an
        // initialized item and index+1 is allocated
        unsafe {
            let ith = self.raw().offset(index);
            ith.copy_to(ith.offset(1), self.len - index);
            ith.set(element);
        }
        self.len += 1;
    }

    /// Removes and returns the element at position index within the vector,
    /// shifting all elements after it to the left.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1), Foo(2), Foo(3)];
    /// assert_eq!(soa.remove(1), Foo(2));
    /// assert_eq!(soa, soa![Foo(1), Foo(3)])
    /// ```
    pub fn remove(&mut self, index: usize) -> T {
        assert!(index < self.len, "index out of bounds");
        self.len -= 1;
        // SAFETY: After the bounds check, we know ith item is initialized
        let ith = unsafe { self.raw().offset(index) };
        let out = unsafe { ith.get() };
        // SAFETY: There are len-index initialized elements to shift back
        unsafe {
            ith.offset(1).copy_to(ith, self.len - index);
        }
        out
    }

    /// Reserves capacity for at least additional more elements to be inserted
    /// in the given `Soa<T>`. The collection may reserve more space to
    /// speculatively avoid frequent reallocations. After calling reserve,
    /// capacity will be greater than or equal to `self.len() + additional`.
    /// Does nothing if capacity is already sufficient.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1)];
    /// soa.reserve(10);
    /// assert!(soa.capacity() >= 11);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        let new_len = self.len + additional;
        if new_len > self.cap {
            let new_cap = new_len
                // Ensure exponential growth
                .max(self.cap * 2)
                .max(Self::SMALL_CAPACITY);
            self.grow(new_cap);
        }
    }

    /// Reserves the minimum capacity for at least additional more elements to
    /// be inserted in the given `Soa<T>`. Unlike [`Soa::reserve`], this will
    /// not deliberately over-allocate to speculatively avoid frequent
    /// allocations. After calling `reserve_exact`, capacity will be equal to
    /// self.len() + additional, or else `usize::MAX` if `T` is zero-sized. Does
    /// nothing if the capacity is already sufficient.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1)];
    /// soa.reserve(10);
    /// assert!(soa.capacity() == 11);
    /// ```
    pub fn reserve_exact(&mut self, additional: usize) {
        let new_len = additional + self.len;
        if new_len > self.cap {
            self.grow(new_len);
        }
    }

    /// Shrinks the capacity of the container as much as possible.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = Soa::<Foo>::with_capacity(10);
    /// soa.extend([Foo(1), Foo(2), Foo(3)]);
    /// assert_eq!(soa.capacity(), 10);
    /// soa.shrink_to_fit();
    /// assert_eq!(soa.capacity(), 3);
    /// ```
    pub fn shrink_to_fit(&mut self) {
        self.shrink(self.len);
    }

    /// Shrinks the capacity of the vector with a lower bound.
    ///
    /// The capacity will remain at least as large as both the length and the
    /// supplied value. If the current capacity is less than the lower limit,
    /// this is a no-op.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = Soa::<Foo>::with_capacity(10);
    /// soa.extend([Foo(1), Foo(2), Foo(3)]);
    /// assert_eq!(soa.capacity(), 10);
    /// soa.shrink_to(4);
    /// assert_eq!(soa.capacity(), 4);
    /// soa.shrink_to(0);
    /// assert_eq!(soa.capacity(), 3);
    pub fn shrink_to(&mut self, min_capacity: usize) {
        let new_cap = self.len.max(min_capacity);
        if new_cap < self.cap {
            self.shrink(new_cap);
        }
    }

    /// Shortens the vector, keeping the first len elements and dropping the rest.
    ///
    /// If len is greater or equal to the vector’s current length, this has no
    /// effect. Note that this method has no effect on the allocated capacity of
    /// the vector.
    ///
    /// # Examples
    ///
    /// Truncating a five-element SOA to two elements:
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1), Foo(2), Foo(3), Foo(4), Foo(5)];
    /// soa.truncate(2);
    /// assert_eq!(soa, soa![Foo(1), Foo(2)]);
    /// ```
    ///
    /// No truncation occurs when `len` is greater than the SOA's current
    /// length:
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1), Foo(2), Foo(3)];
    /// soa.truncate(8);
    /// assert_eq!(soa, soa![Foo(1), Foo(2), Foo(3)]);
    /// ```
    ///
    /// Truncating with `len == 0` is equivalent to [`Soa::clear`].
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1), Foo(2), Foo(3)];
    /// soa.truncate(0);
    /// assert_eq!(soa, soa![]);
    /// ```
    pub fn truncate(&mut self, len: usize) {
        while len < self.len {
            self.pop();
        }
    }

    /// Removes an element from the vector and returns it.
    ///
    /// The removed element is replaced by the last element of the vector. This
    /// does not preserve ordering, but is O(1). If you need to preserve the
    /// element order, use remove instead.
    ///
    /// # Panics
    ///
    /// Panics if index is out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(0), Foo(1), Foo(2), Foo(3)];
    ///
    /// assert_eq!(soa.swap_remove(1), Foo(1));
    /// assert_eq!(soa, soa![Foo(0), Foo(3), Foo(2)]);
    ///
    /// assert_eq!(soa.swap_remove(0), Foo(0));
    /// assert_eq!(soa, soa![Foo(2), Foo(3)])
    /// ```
    pub fn swap_remove(&mut self, index: usize) -> T {
        if index >= self.len {
            panic!("index out of bounds")
        }
        self.len -= 1;
        // SAFETY: index and len-1 are initialized elements
        let to_remove = unsafe { self.raw().offset(index) };
        let last = unsafe { self.raw().offset(self.len) };
        let out = unsafe { to_remove.get() };
        unsafe {
            last.copy_to(to_remove, 1);
        }
        out
    }

    /// Moves all the elements of other into self, leaving other empty.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa1  = soa![Foo(1), Foo(2), Foo(3)];
    /// let mut soa2 = soa![Foo(4), Foo(5), Foo(6)];
    /// soa1.append(&mut soa2);
    /// assert_eq!(soa1, soa![Foo(1), Foo(2), Foo(3), Foo(4), Foo(5), Foo(6)]);
    /// assert_eq!(soa2, soa![]);
    /// ```
    pub fn append(&mut self, other: &mut Self) {
        self.reserve(other.len);
        for i in 0..other.len {
            // SAFETY: i is in bounds
            let element = unsafe { other.raw().offset(i).get() };
            self.push(element);
        }
        other.clear();
    }

    /// Clears the vector, removing all values.
    ///
    /// Note that this method has no effect on the allocated capacity of the
    /// vector.
    ///
    /// # Examples
    ///
    /// ```
    /// # use soa_rs::{Soa, Soars, soa};
    /// # #[derive(Soars, Debug, PartialEq)]
    /// # #[soa_derive(Debug, PartialEq)]
    /// # struct Foo(usize);
    /// let mut soa = soa![Foo(1), Foo(2)];
    /// soa.clear();
    /// assert!(soa.is_empty());
    /// ```
    pub fn clear(&mut self) {
        while self.pop().is_some() {}
    }

    /// Grows the allocated capacity if `len == cap`.
    fn maybe_grow(&mut self) {
        if self.len < self.cap {
            return;
        }
        let new_cap = match self.cap {
            0 => Self::SMALL_CAPACITY,
            old_cap => old_cap * 2,
        };
        self.grow(new_cap);
    }

    // Shrinks the allocated capacity.
    fn shrink(&mut self, new_cap: usize) {
        debug_assert!(new_cap <= self.cap);
        if self.cap == 0 || new_cap == self.cap || size_of::<T>() == 0 {
            return;
        }

        if new_cap == 0 {
            debug_assert!(self.cap > 0);
            // SAFETY: We asserted the preconditions
            unsafe {
                self.raw().dealloc(self.cap);
            }
            self.raw = T::Raw::dangling();
        } else {
            debug_assert!(new_cap < self.cap);
            debug_assert!(self.len <= new_cap);
            // SAFETY: We asserted the preconditions
            unsafe {
                self.raw = self.raw().realloc_shrink(self.cap, new_cap, self.len);
            }
        }

        self.cap = new_cap;
    }

    /// Grows the allocated capacity.
    fn grow(&mut self, new_cap: usize) {
        debug_assert!(size_of::<T>() > 0);
        debug_assert!(new_cap > self.cap);

        if self.cap == 0 {
            debug_assert!(new_cap > 0);
            // SAFETY: We asserted the preconditions
            self.raw = unsafe { T::Raw::alloc(new_cap) };
        } else {
            debug_assert!(self.len <= self.cap);
            // SAFETY: We asserted the preconditions
            unsafe {
                self.raw = self.raw().realloc_grow(self.cap, new_cap, self.len);
            }
        }

        self.cap = new_cap;
    }
}

impl<T> Drop for Soa<T>
where
    T: Soars,
{
    fn drop(&mut self) {
        if needs_drop::<T>() {
            while self.pop().is_some() {}
        }

        if size_of::<T>() > 0 && self.cap > 0 {
            // SAFETY: We asserted the preconditions
            unsafe {
                self.raw().dealloc(self.cap);
            }
        }
    }
}

impl<T> IntoIterator for Soa<T>
where
    T: Soars,
{
    type Item = T;

    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        let soa = ManuallyDrop::new(self);
        IntoIter {
            iter_raw: IterRaw {
                slice: soa.slice,
                len: soa.len,
                adapter: PhantomData,
            },
            ptr: soa.raw().into_parts(),
            cap: soa.cap,
        }
    }
}

impl<'a, T> IntoIterator for &'a Soa<T>
where
    T: Soars,
{
    type Item = T::Ref<'a>;

    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.deref().into_iter()
    }
}

impl<'a, T> IntoIterator for &'a mut Soa<T>
where
    T: Soars,
{
    type Item = T::RefMut<'a>;

    type IntoIter = IterMut<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.deref_mut().into_iter()
    }
}

// NOTE: Copy is the required bound because calling Clone::clone on a
// stack-allocated element is unsound in the presence of interior mutability
// unless the fields are written back, which we also can't do because of &self.
impl<T> Clone for Soa<T>
where
    T: Soars + Copy,
{
    fn clone(&self) -> Self {
        let mut out = Self::with_capacity(self.len);
        for i in 0..self.len {
            // SAFETY: i is in-bounds
            let el = unsafe { self.raw.offset(i).get() };
            out.push(el);
        }
        out
    }

    fn clone_from(&mut self, source: &Self) {
        self.clear();
        self.reserve_exact(source.len);
        for i in 0..source.len {
            // SAFETY: i is in-bounds
            let el = unsafe { source.raw.offset(i).get() };
            self.push(el);
        }
    }
}

impl<T> Extend<T> for Soa<T>
where
    T: Soars,
{
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        for item in iter {
            self.push(item);
        }
    }
}

impl<T> FromIterator<T> for Soa<T>
where
    T: Soars,
{
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        let iter = iter.into_iter();
        let (hint_min, hint_max) = iter.size_hint();
        let cap = hint_max.unwrap_or(hint_min);
        let mut out = Self::with_capacity(cap);
        for item in iter {
            out.push(item);
        }
        out
    }
}

impl<T, const N: usize> From<[T; N]> for Soa<T>
where
    T: Soars,
{
    /// Allocate a `Soa<T>` and move `value`'s items into it.
    fn from(value: [T; N]) -> Self {
        value.into_iter().collect()
    }
}

impl<T, const N: usize> From<&[T; N]> for Soa<T>
where
    T: Soars + Clone,
{
    /// Allocate a `Soa<T>` and fill it by cloning `value`'s items.
    fn from(value: &[T; N]) -> Self {
        value.iter().cloned().collect()
    }
}

impl<T, const N: usize> From<&mut [T; N]> for Soa<T>
where
    T: Soars + Clone,
{
    /// Allocate a `Soa<T>` and fill it by cloning `value`'s items.
    fn from(value: &mut [T; N]) -> Self {
        value.iter().cloned().collect()
    }
}

impl<T> From<&[T]> for Soa<T>
where
    T: Soars + Clone,
{
    /// Allocate a `Soa<T>` and fill it by cloning `value`'s items.
    fn from(value: &[T]) -> Self {
        value.iter().cloned().collect()
    }
}

impl<T> From<&mut [T]> for Soa<T>
where
    T: Soars + Clone,
{
    /// Allocate a `Soa<T>` and fill it by cloning `value`'s items.
    fn from(value: &mut [T]) -> Self {
        value.iter().cloned().collect()
    }
}

impl<T> Debug for Soa<T>
where
    T: Soars,
    for<'a> T::Ref<'a>: Debug,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        self.as_slice().fmt(f)
    }
}

impl<T> PartialOrd for Soa<T>
where
    T: Soars,
    for<'a> T::Ref<'a>: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.as_slice().partial_cmp(&other.as_slice())
    }
}

impl<T> Ord for Soa<T>
where
    T: Soars,
    for<'a> T::Ref<'a>: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        self.as_slice().cmp(&other.as_slice())
    }
}

impl<T> Hash for Soa<T>
where
    T: Soars,
    for<'a> T::Ref<'a>: Hash,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.as_slice().hash(state)
    }
}

impl<T> Default for Soa<T>
where
    T: Soars,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<T> AsRef<Slice<T>> for Soa<T>
where
    T: Soars,
{
    fn as_ref(&self) -> &Slice<T> {
        // SAFETY:
        // - len is valid for the slice
        // - The lifetime is bound to self
        unsafe { self.slice.as_unsized(self.len) }
    }
}

impl<T> AsMut<Slice<T>> for Soa<T>
where
    T: Soars,
{
    fn as_mut(&mut self) -> &mut Slice<T> {
        // SAFETY:
        // - len is valid for the slice
        // - The lifetime is bound to self
        unsafe { self.slice.as_unsized_mut(self.len) }
    }
}

impl<T> AsRef<Self> for Soa<T>
where
    T: Soars,
{
    fn as_ref(&self) -> &Self {
        self
    }
}

impl<T> AsMut<Self> for Soa<T>
where
    T: Soars,
{
    fn as_mut(&mut self) -> &mut Self {
        self
    }
}

impl<T> Deref for Soa<T>
where
    T: Soars,
{
    type Target = Slice<T>;

    fn deref(&self) -> &Self::Target {
        self.as_ref()
    }
}

impl<T> DerefMut for Soa<T>
where
    T: Soars,
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut()
    }
}

impl<T> Borrow<Slice<T>> for Soa<T>
where
    T: Soars,
{
    fn borrow(&self) -> &Slice<T> {
        self.as_ref()
    }
}

impl<T> BorrowMut<Slice<T>> for Soa<T>
where
    T: Soars,
{
    fn borrow_mut(&mut self) -> &mut Slice<T> {
        self.as_mut()
    }
}

impl<T, R> PartialEq<R> for Soa<T>
where
    T: Soars,
    R: AsSlice<Item = T> + ?Sized,
    for<'a> T::Ref<'a>: PartialEq,
{
    fn eq(&self, other: &R) -> bool {
        self.as_slice() == other.as_slice()
    }
}

impl<T> Eq for Soa<T>
where
    T: Soars,
    for<'a> T::Ref<'a>: Eq,
{
}

impl<T> AsSlice for Soa<T>
where
    T: Soars,
{
    type Item = T;

    fn as_slice(&self) -> SliceRef<'_, Self::Item> {
        // SAFETY:
        // - len is valid for this slice
        // - The returned lifetime is bound to self
        unsafe { SliceRef::from_slice(self.slice, self.len) }
    }
}

impl<T> AsMutSlice for Soa<T>
where
    T: Soars,
{
    fn as_mut_slice(&mut self) -> crate::SliceMut<'_, Self::Item> {
        // SAFETY:
        // - len is valid for this slice
        // - The returned lifetime is bound to self
        unsafe { SliceMut::from_slice(self.slice, self.len) }
    }
}