1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use approx::relative_eq;
use bevy::math::prelude::*;
const PI: f32 = std::f32::consts::PI;
#[derive(Clone, Copy, Debug, Default)]
pub struct LookAngles {
yaw: f32,
pitch: f32,
}
impl LookAngles {
pub fn from_vector(v: Vec3) -> Self {
let mut p = Self::default();
p.set_direction(v);
p
}
pub fn unit_vector(self) -> Vec3 {
unit_vector_from_yaw_and_pitch(self.yaw, self.pitch)
}
pub fn set_direction(&mut self, v: Vec3) {
let (yaw, pitch) = yaw_and_pitch_from_vector(v);
self.set_yaw(yaw);
self.set_pitch(pitch);
}
pub fn set_yaw(&mut self, yaw: f32) {
self.yaw = yaw % (2.0 * PI);
}
pub fn get_yaw(&self) -> f32 {
self.yaw
}
pub fn add_yaw(&mut self, delta: f32) {
self.set_yaw(self.get_yaw() + delta);
}
pub fn set_pitch(&mut self, pitch: f32) {
let up_eps = 0.01;
self.pitch = pitch.min(PI / 2.0 - up_eps).max(-PI / 2.0 + up_eps);
}
pub fn get_pitch(&self) -> f32 {
self.pitch
}
pub fn add_pitch(&mut self, delta: f32) {
self.set_pitch(self.get_pitch() + delta);
}
pub fn assert_not_looking_up(&self) {
let is_looking_up = relative_eq!(self.unit_vector().dot(Vec3::Y).abs(), 1.0);
assert!(
!is_looking_up,
"Your camera transform is fucked up. Your look direction {} is probably bad.",
self.unit_vector(),
);
}
}
fn yaw_and_pitch_from_vector(v: Vec3) -> (f32, f32) {
debug_assert_ne!(v, Vec3::ZERO);
let y = Vec3::Y;
let z = Vec3::Z;
let v_xz = Vec3::new(v.x, 0.0, v.z);
if v_xz == Vec3::ZERO {
if v.dot(y) > 0.0 {
return (0.0, PI / 2.0);
} else {
return (0.0, -PI / 2.0);
}
}
let mut yaw = v_xz.angle_between(z);
if v.x < 0.0 {
yaw *= -1.0;
}
let mut pitch = v_xz.angle_between(v);
if v.y < 0.0 {
pitch *= -1.0;
}
(yaw, pitch)
}
fn unit_vector_from_yaw_and_pitch(yaw: f32, pitch: f32) -> Vec3 {
let ray = Mat3::from_rotation_y(yaw) * Vec3::Z;
let pitch_axis = ray.cross(Vec3::Y);
Mat3::from_axis_angle(pitch_axis, pitch) * ray
}
#[cfg(test)]
mod tests {
use super::*;
use approx::assert_relative_eq;
const PI: f32 = std::f32::consts::PI;
#[test]
fn test_yaw_and_pitch_identity() {
let v = Vec3::new(0.0, 0.0, 1.0);
let (yaw, pitch) = yaw_and_pitch_from_vector(v);
assert_relative_eq!(yaw, 0.0);
assert_relative_eq!(pitch, 0.0);
}
#[test]
fn test_yaw_only() {
let (yaw, pitch) = yaw_and_pitch_from_vector(Vec3::new(1.0, 0.0, 0.0));
assert_relative_eq!(yaw, PI / 2.0);
assert_relative_eq!(pitch, 0.0);
let (yaw, pitch) = yaw_and_pitch_from_vector(Vec3::new(-1.0, 0.0, 0.0));
assert_relative_eq!(yaw, -PI / 2.0);
assert_relative_eq!(pitch, 0.0);
}
#[test]
fn test_pitch_only() {
let (yaw, pitch) = yaw_and_pitch_from_vector(Vec3::new(0.0, 1.0, 0.0));
assert_relative_eq!(yaw, 0.0);
assert_relative_eq!(pitch, PI / 2.0);
let (yaw, pitch) = yaw_and_pitch_from_vector(Vec3::new(0.0, -1.0, 0.0));
assert_relative_eq!(yaw, 0.0);
assert_relative_eq!(pitch, -PI / 2.0);
}
#[test]
fn test_yaw_and_pitch() {
let (yaw, pitch) = yaw_and_pitch_from_vector(Vec3::new(0.5f32.sqrt(), 1.0, 0.5f32.sqrt()));
assert_relative_eq!(yaw, PI / 4.0, epsilon = 1e-6f32);
assert_relative_eq!(pitch, PI / 4.0);
let (yaw, pitch) =
yaw_and_pitch_from_vector(Vec3::new(-0.5f32.sqrt(), -1.0, 0.5f32.sqrt()));
assert_relative_eq!(yaw, -PI / 4.0, epsilon = 1e-6f32);
assert_relative_eq!(pitch, -PI / 4.0);
}
}