use std::marker::PhantomData;
use crate::api::{Transformer, UnsupervisedEstimator};
use crate::error::{Failed, FailedError};
use crate::linalg::basic::arrays::Array2;
use crate::numbers::basenum::Number;
use crate::numbers::realnum::RealNumber;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, Eq, PartialEq)]
pub struct StandardScalerParameters {
with_mean: bool,
with_std: bool,
}
impl Default for StandardScalerParameters {
fn default() -> Self {
StandardScalerParameters {
with_mean: true,
with_std: true,
}
}
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Default, PartialEq)]
pub struct StandardScaler<T: Number + RealNumber> {
means: Vec<f64>,
stds: Vec<f64>,
parameters: StandardScalerParameters,
_phantom: PhantomData<T>,
}
#[allow(dead_code)]
impl<T: Number + RealNumber> StandardScaler<T> {
fn new(parameters: StandardScalerParameters) -> Self
where
T: Number + RealNumber,
{
Self {
means: vec![],
stds: vec![],
parameters: StandardScalerParameters {
with_mean: parameters.with_mean,
with_std: parameters.with_std,
},
_phantom: PhantomData,
}
}
fn adjust_column_mean(&self, mean: f64) -> f64 {
if self.parameters.with_mean {
mean
} else {
0f64
}
}
fn adjust_column_std(&self, std: f64) -> f64 {
if self.parameters.with_std {
ensure_std_valid(std)
} else {
1f64
}
}
}
fn ensure_std_valid<T: Number + RealNumber>(value: T) -> T {
value.max(T::min_positive_value())
}
impl<T: Number + RealNumber, M: Array2<T>> UnsupervisedEstimator<M, StandardScalerParameters>
for StandardScaler<T>
{
fn fit(x: &M, parameters: StandardScalerParameters) -> Result<Self, Failed>
where
T: Number + RealNumber,
M: Array2<T>,
{
Ok(Self {
means: x.column_mean(),
stds: x.std_dev(0),
parameters,
_phantom: Default::default(),
})
}
}
impl<T: Number + RealNumber, M: Array2<T>> Transformer<M> for StandardScaler<T> {
fn transform(&self, x: &M) -> Result<M, Failed> {
let (_, n_cols) = x.shape();
if n_cols != self.means.len() {
return Err(Failed::because(
FailedError::TransformFailed,
&format!(
"Expected {} columns, but got {} columns instead.",
self.means.len(),
n_cols,
),
));
}
Ok(build_matrix_from_columns(
self.means
.iter()
.zip(self.stds.iter())
.enumerate()
.map(|(column_index, (column_mean, column_std))| {
x.take_column(column_index)
.sub_scalar(T::from(self.adjust_column_mean(*column_mean)).unwrap())
.div_scalar(T::from(self.adjust_column_std(*column_std)).unwrap())
})
.collect(),
)
.unwrap())
}
}
fn build_matrix_from_columns<T, M>(columns: Vec<M>) -> Option<M>
where
T: Number + RealNumber,
M: Array2<T>,
{
columns.first().cloned().map(|output_matrix| {
columns
.iter()
.skip(1)
.fold(output_matrix, |current_matrix, new_colum| {
current_matrix.h_stack(new_colum)
})
})
}
#[cfg(test)]
mod tests {
mod helper_functionality {
use super::super::{build_matrix_from_columns, ensure_std_valid};
use crate::linalg::basic::matrix::DenseMatrix;
#[test]
fn combine_three_columns() {
assert_eq!(
build_matrix_from_columns(vec![
DenseMatrix::from_2d_vec(&vec![vec![1.0], vec![1.0], vec![1.0],]).unwrap(),
DenseMatrix::from_2d_vec(&vec![vec![2.0], vec![2.0], vec![2.0],]).unwrap(),
DenseMatrix::from_2d_vec(&vec![vec![3.0], vec![3.0], vec![3.0],]).unwrap()
]),
Some(
DenseMatrix::from_2d_vec(&vec![
vec![1.0, 2.0, 3.0],
vec![1.0, 2.0, 3.0],
vec![1.0, 2.0, 3.0]
])
.unwrap()
)
)
}
#[test]
fn negative_value_should_be_replace_with_minimal_positive_value() {
assert_eq!(ensure_std_valid(-1.0), f64::MIN_POSITIVE)
}
#[test]
fn zero_should_be_replace_with_minimal_positive_value() {
assert_eq!(ensure_std_valid(0.0), f64::MIN_POSITIVE)
}
}
mod standard_scaler {
use super::super::{StandardScaler, StandardScalerParameters};
use crate::api::{Transformer, UnsupervisedEstimator};
use crate::linalg::basic::arrays::Array2;
use crate::linalg::basic::matrix::DenseMatrix;
#[test]
fn dont_adjust_mean_if_used() {
assert_eq!(
(StandardScaler::<f64>::new(StandardScalerParameters {
with_mean: true,
with_std: true
}))
.adjust_column_mean(1.0),
1.0
)
}
#[test]
fn replace_mean_with_zero_if_not_used() {
assert_eq!(
(StandardScaler::<f64>::new(StandardScalerParameters {
with_mean: false,
with_std: true
}))
.adjust_column_mean(1.0),
0.0
)
}
#[test]
fn dont_adjust_std_if_used() {
assert_eq!(
(StandardScaler::<f64>::new(StandardScalerParameters {
with_mean: true,
with_std: true
}))
.adjust_column_std(10.0),
10.0
)
}
#[test]
fn replace_std_with_one_if_not_used() {
assert_eq!(
(StandardScaler::<f64>::new(StandardScalerParameters {
with_mean: true,
with_std: false
}))
.adjust_column_std(10.0),
1.0
)
}
fn fit_transform_with_default_standard_scaler(
values_to_be_transformed: &DenseMatrix<f64>,
) -> DenseMatrix<f64> {
StandardScaler::fit(
values_to_be_transformed,
StandardScalerParameters::default(),
)
.unwrap()
.transform(values_to_be_transformed)
.unwrap()
}
#[test]
fn fit_transform_random_values() {
let transformed_values = fit_transform_with_default_standard_scaler(
&DenseMatrix::from_2d_array(&[
&[0.1004222429, 0.2194113576, 0.9310663354, 0.3313593793],
&[0.2045493861, 0.1683865411, 0.5071506765, 0.7257355264],
&[0.5708488802, 0.1846414616, 0.9590802982, 0.5591871046],
&[0.8387612750, 0.5754861361, 0.5537109852, 0.1077646442],
])
.unwrap(),
);
println!("{transformed_values}");
assert!(transformed_values.approximate_eq(
&DenseMatrix::from_2d_array(&[
&[-1.1154020653, -0.4031985330, 0.9284605204, -0.4271473866],
&[-0.7615464283, -0.7076698384, -1.1075452562, 1.2632979631],
&[0.4832504303, -0.6106747444, 1.0630075435, 0.5494084257],
&[1.3936980634, 1.7215431158, -0.8839228078, -1.3855590021],
])
.unwrap(),
1.0
))
}
#[test]
fn fit_transform_with_zero_variance() {
assert_eq!(
fit_transform_with_default_standard_scaler(
&DenseMatrix::from_2d_array(&[&[1.0], &[1.0], &[1.0], &[1.0]]).unwrap()
),
DenseMatrix::from_2d_array(&[&[0.0], &[0.0], &[0.0], &[0.0]]).unwrap(),
"When scaling values with zero variance, zero is expected as return value"
)
}
#[test]
fn fit_for_simple_values() {
assert_eq!(
StandardScaler::fit(
&DenseMatrix::from_2d_array(&[
&[1.0, 1.0, 1.0],
&[1.0, 2.0, 5.0],
&[1.0, 1.0, 1.0],
&[1.0, 2.0, 5.0]
])
.unwrap(),
StandardScalerParameters::default(),
),
Ok(StandardScaler {
means: vec![1.0, 1.5, 3.0],
stds: vec![0.0, 0.5, 2.0],
parameters: StandardScalerParameters {
with_mean: true,
with_std: true
},
_phantom: Default::default(),
})
)
}
#[test]
fn fit_for_random_values() {
let fitted_scaler = StandardScaler::fit(
&DenseMatrix::from_2d_array(&[
&[0.1004222429, 0.2194113576, 0.9310663354, 0.3313593793],
&[0.2045493861, 0.1683865411, 0.5071506765, 0.7257355264],
&[0.5708488802, 0.1846414616, 0.9590802982, 0.5591871046],
&[0.8387612750, 0.5754861361, 0.5537109852, 0.1077646442],
])
.unwrap(),
StandardScalerParameters::default(),
)
.unwrap();
assert_eq!(
fitted_scaler.means,
vec![0.42864544605, 0.2869813741, 0.737752073825, 0.431011663625],
);
assert!(&DenseMatrix::<f64>::from_2d_vec(&vec![fitted_scaler.stds])
.unwrap()
.approximate_eq(
&DenseMatrix::from_2d_array(&[&[
0.29426447500954,
0.16758497615485,
0.20820945786863,
0.23329718831165
],])
.unwrap(),
0.00000000000001
))
}
#[test]
fn transform_without_std() {
let standard_scaler = StandardScaler {
means: vec![1.0, 3.0],
stds: vec![1.0, 2.0],
parameters: StandardScalerParameters {
with_mean: true,
with_std: false,
},
_phantom: Default::default(),
};
assert_eq!(
standard_scaler
.transform(&DenseMatrix::from_2d_array(&[&[0.0, 2.0], &[2.0, 4.0]]).unwrap()),
Ok(DenseMatrix::from_2d_array(&[&[-1.0, -1.0], &[1.0, 1.0]]).unwrap())
)
}
#[test]
fn transform_without_mean() {
let standard_scaler = StandardScaler {
means: vec![1.0, 2.0],
stds: vec![2.0, 3.0],
parameters: StandardScalerParameters {
with_mean: false,
with_std: true,
},
_phantom: Default::default(),
};
assert_eq!(
standard_scaler
.transform(&DenseMatrix::from_2d_array(&[&[0.0, 9.0], &[4.0, 12.0]]).unwrap()),
Ok(DenseMatrix::from_2d_array(&[&[0.0, 3.0], &[2.0, 4.0]]).unwrap())
)
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
#[cfg(feature = "serde")]
fn serde_fit_for_random_values() {
let fitted_scaler = StandardScaler::fit(
&DenseMatrix::from_2d_array(&[
&[0.1004222429, 0.2194113576, 0.9310663354, 0.3313593793],
&[0.2045493861, 0.1683865411, 0.5071506765, 0.7257355264],
&[0.5708488802, 0.1846414616, 0.9590802982, 0.5591871046],
&[0.8387612750, 0.5754861361, 0.5537109852, 0.1077646442],
])
.unwrap(),
StandardScalerParameters::default(),
)
.unwrap();
let deserialized_scaler: StandardScaler<f64> =
serde_json::from_str(&serde_json::to_string(&fitted_scaler).unwrap()).unwrap();
assert_eq!(
deserialized_scaler.means,
vec![0.42864544605, 0.2869813741, 0.737752073825, 0.431011663625],
);
assert!(&DenseMatrix::from_2d_vec(&vec![deserialized_scaler.stds])
.unwrap()
.approximate_eq(
&DenseMatrix::from_2d_array(&[&[
0.29426447500954,
0.16758497615485,
0.20820945786863,
0.23329718831165
],])
.unwrap(),
0.00000000000001
))
}
}
}