use std::collections::HashMap;
use std::marker::PhantomData;
use crate::api::UnsupervisedEstimator;
use crate::error::{Failed, FailedError};
use crate::linalg::basic::arrays::{Array1, Array2};
use crate::numbers::basenum::Number;
#[derive(Debug, Clone, Copy)]
pub struct AgglomerativeClusteringParameters {
pub n_clusters: usize,
}
impl AgglomerativeClusteringParameters {
pub fn with_n_clusters(mut self, n_clusters: usize) -> Self {
self.n_clusters = n_clusters;
self
}
}
impl Default for AgglomerativeClusteringParameters {
fn default() -> Self {
AgglomerativeClusteringParameters { n_clusters: 2 }
}
}
#[derive(Debug)]
pub struct AgglomerativeClustering<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> {
pub labels: Vec<usize>,
_phantom_tx: PhantomData<TX>,
_phantom_ty: PhantomData<TY>,
_phantom_x: PhantomData<X>,
_phantom_y: PhantomData<Y>,
}
impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> AgglomerativeClustering<TX, TY, X, Y> {
pub fn fit(data: &X, parameters: AgglomerativeClusteringParameters) -> Result<Self, Failed> {
let (num_samples, _) = data.shape();
let n_clusters = parameters.n_clusters;
if n_clusters > num_samples {
return Err(Failed::because(
FailedError::ParametersError,
&format!(
"n_clusters: {n_clusters} cannot be greater than n_samples: {num_samples}"
),
));
}
let mut distance_pairs = Vec::new();
for i in 0..num_samples {
for j in (i + 1)..num_samples {
let distance: f64 = data
.get_row(i)
.iterator(0)
.zip(data.get_row(j).iterator(0))
.map(|(&a, &b)| (a.to_f64().unwrap() - b.to_f64().unwrap()).powi(2))
.sum::<f64>();
distance_pairs.push((distance, i, j));
}
}
distance_pairs.sort_unstable_by(|a, b| b.0.partial_cmp(&a.0).unwrap());
let mut parent = HashMap::new();
let mut children = HashMap::new();
for i in 0..num_samples {
parent.insert(i, i);
children.insert(i, vec![i]);
}
let mut merge_history = Vec::new();
let num_merges_needed = num_samples - 1;
while merge_history.len() < num_merges_needed {
let (_, p1, p2) = distance_pairs.pop().unwrap();
let root1 = parent[&p1];
let root2 = parent[&p2];
if root1 != root2 {
let root2_children = children.remove(&root2).unwrap();
for child in root2_children.iter() {
parent.insert(*child, root1);
}
let root1_children = children.get_mut(&root1).unwrap();
root1_children.extend(root2_children);
merge_history.push((root1, root2));
}
}
let mut clusters = HashMap::new();
let mut assignments = HashMap::new();
for i in 0..num_samples {
clusters.insert(i, vec![i]);
assignments.insert(i, i);
}
let merges_to_apply = num_samples - n_clusters;
for (root1, root2) in merge_history[0..merges_to_apply].iter() {
let root1_cluster = assignments[root1];
let root2_cluster = assignments[root2];
let root2_assignments = clusters.remove(&root2_cluster).unwrap();
for assignment in root2_assignments.iter() {
assignments.insert(*assignment, root1_cluster);
}
let root1_assignments = clusters.get_mut(&root1_cluster).unwrap();
root1_assignments.extend(root2_assignments);
}
let mut labels: Vec<usize> = (0..num_samples).map(|_| 0).collect();
let mut cluster_keys: Vec<&usize> = clusters.keys().collect();
cluster_keys.sort();
for (i, key) in cluster_keys.into_iter().enumerate() {
for index in clusters[key].iter() {
labels[*index] = i;
}
}
Ok(AgglomerativeClustering {
labels,
_phantom_tx: PhantomData,
_phantom_ty: PhantomData,
_phantom_x: PhantomData,
_phantom_y: PhantomData,
})
}
}
impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>>
UnsupervisedEstimator<X, AgglomerativeClusteringParameters>
for AgglomerativeClustering<TX, TY, X, Y>
{
fn fit(x: &X, parameters: AgglomerativeClusteringParameters) -> Result<Self, Failed> {
AgglomerativeClustering::fit(x, parameters)
}
}
#[cfg(test)]
mod tests {
use crate::linalg::basic::matrix::DenseMatrix;
use std::collections::HashSet;
use super::*;
#[test]
fn test_simple_clustering() {
let data = vec![
0.0, 0.0, 1.0, 1.0, 0.5, 0.5, 10.0, 10.0, 11.0, 11.0, 10.5, 10.5, ];
let matrix = DenseMatrix::new(6, 2, data, false).unwrap();
let parameters = AgglomerativeClusteringParameters::default().with_n_clusters(2);
let clustering = AgglomerativeClustering::<f64, f64, DenseMatrix<f64>, Vec<f64>>::fit(
&matrix, parameters,
)
.unwrap();
let labels = clustering.labels;
let first_group_label = labels[0];
assert!(labels[0..3].iter().all(|&l| l == first_group_label));
let second_group_label = labels[3];
assert!(labels[3..6].iter().all(|&l| l == second_group_label));
assert_ne!(first_group_label, second_group_label);
}
#[test]
fn test_four_clusters() {
let data = vec![
0.0, 0.0, 1.0, 1.0, 100.0, 100.0, 101.0, 101.0, 0.0, 100.0, 1.0, 101.0, 100.0, 0.0, 101.0, 1.0, ];
let matrix = DenseMatrix::new(8, 2, data, false).unwrap();
let parameters = AgglomerativeClusteringParameters::default().with_n_clusters(4);
let clustering = AgglomerativeClustering::<f64, f64, DenseMatrix<f64>, Vec<f64>>::fit(
&matrix, parameters,
)
.unwrap();
let labels = clustering.labels;
let unique_labels: HashSet<usize> = labels.iter().cloned().collect();
assert_eq!(unique_labels.len(), 4);
let label_a = labels[0];
assert_eq!(label_a, labels[1]);
let label_b = labels[2];
assert_eq!(label_b, labels[3]);
let label_c = labels[4];
assert_eq!(label_c, labels[5]);
let label_d = labels[6];
assert_eq!(label_d, labels[7]);
assert_ne!(label_a, label_b);
assert_ne!(label_a, label_c);
assert_ne!(label_a, label_d);
assert_ne!(label_b, label_c);
assert_ne!(label_b, label_d);
assert_ne!(label_c, label_d);
}
#[test]
fn test_n_clusters_equal_to_samples() {
let data = vec![0.0, 0.0, 5.0, 5.0, 10.0, 10.0];
let matrix = DenseMatrix::new(3, 2, data, false).unwrap();
let parameters = AgglomerativeClusteringParameters::default().with_n_clusters(3);
let clustering = AgglomerativeClustering::<f64, f64, DenseMatrix<f64>, Vec<f64>>::fit(
&matrix, parameters,
)
.unwrap();
let mut labels = clustering.labels;
labels.sort();
assert_eq!(labels, vec![0, 1, 2]);
}
#[test]
fn test_one_cluster() {
let data = vec![0.0, 0.0, 5.0, 5.0, 10.0, 10.0];
let matrix = DenseMatrix::new(3, 2, data, false).unwrap();
let parameters = AgglomerativeClusteringParameters::default().with_n_clusters(1);
let clustering = AgglomerativeClustering::<f64, f64, DenseMatrix<f64>, Vec<f64>>::fit(
&matrix, parameters,
)
.unwrap();
assert_eq!(clustering.labels, vec![0, 0, 0]);
}
#[test]
fn test_error_on_too_many_clusters() {
let data = vec![0.0, 0.0, 5.0, 5.0];
let matrix = DenseMatrix::new(2, 2, data, false).unwrap();
let parameters = AgglomerativeClusteringParameters::default().with_n_clusters(3);
let result = AgglomerativeClustering::<f64, f64, DenseMatrix<f64>, Vec<f64>>::fit(
&matrix, parameters,
);
assert!(result.is_err());
}
}