use std::iter;
use crate::error::Failed;
use crate::linalg::basic::arrays::Array2;
use crate::preprocessing::series_encoder::CategoryMapper;
use crate::preprocessing::traits::{CategoricalFloat, Categorizable};
#[derive(Debug, Clone)]
pub struct OneHotEncoderParams {
pub col_idx_categorical: Option<Vec<usize>>,
infer_categorical: bool,
}
impl OneHotEncoderParams {
pub fn from_cat_idx(categorical_params: &[usize]) -> Self {
Self {
col_idx_categorical: Some(categorical_params.to_vec()),
infer_categorical: false,
}
}
}
fn find_new_idxs(num_params: usize, cat_sizes: &[usize], cat_idxs: &[usize]) -> Vec<usize> {
let cat_idx = cat_idxs.iter().copied().chain((num_params..).take(1));
let repeats = cat_idx.scan(0, |a, v| {
let im = v + 1 - *a;
*a = v;
Some(im)
});
let offset_ = cat_sizes.iter().scan(0, |a, &v| {
*a = *a + v - 1;
Some(*a)
});
let offset = (0..1).chain(offset_);
let new_param_idxs: Vec<usize> = (0..num_params)
.zip(
repeats
.zip(offset)
.flat_map(|(r, o)| iter::repeat(o).take(r)),
)
.map(|(idx, ofst)| idx + ofst)
.collect();
new_param_idxs
}
fn validate_col_is_categorical<T: Categorizable>(data: &[T]) -> bool {
for v in data {
if !v.is_valid() {
return false;
}
}
true
}
#[derive(Debug, Clone)]
pub struct OneHotEncoder {
category_mappers: Vec<CategoryMapper<CategoricalFloat>>,
col_idx_categorical: Vec<usize>,
}
impl OneHotEncoder {
pub fn fit<T, M>(data: &M, params: OneHotEncoderParams) -> Result<OneHotEncoder, Failed>
where
T: Categorizable,
M: Array2<T>,
{
match (params.col_idx_categorical, params.infer_categorical) {
(None, false) => Err(Failed::fit(
"Must pass categorical series ids or infer flag",
)),
(Some(_idxs), true) => Err(Failed::fit(
"Ambigous parameters, got both infer and categroy ids",
)),
(Some(mut idxs), false) => {
idxs.sort_unstable();
let (nrows, _) = data.shape();
let mut col_buf: Vec<T> = iter::repeat(T::zero()).take(nrows).collect();
let mut res: Vec<CategoryMapper<CategoricalFloat>> = Vec::with_capacity(idxs.len());
for &idx in &idxs {
data.copy_col_as_vec(idx, &mut col_buf);
if !validate_col_is_categorical(&col_buf) {
let msg = format!(
"Column {idx} of data matrix containts non categorizable (integer) values"
);
return Err(Failed::fit(&msg[..]));
}
let hashable_col = col_buf.iter().map(|v| v.to_category());
res.push(CategoryMapper::fit_to_iter(hashable_col));
}
Ok(Self {
category_mappers: res,
col_idx_categorical: idxs,
})
}
(None, true) => {
todo!("Auto-Inference for Categorical Variables not yet implemented")
}
}
}
pub fn transform<T, M>(&self, x: &M) -> Result<M, Failed>
where
T: Categorizable,
M: Array2<T>,
{
let (nrows, p) = x.shape();
let additional_params: Vec<usize> = self
.category_mappers
.iter()
.map(|enc| enc.num_categories())
.collect();
let expandws_p: usize = p + additional_params.iter().fold(0, |cs, &v| cs + v - 1);
let new_col_idx = find_new_idxs(p, &additional_params[..], &self.col_idx_categorical[..]);
let mut res = M::zeros(nrows, expandws_p);
for (pidx, &old_cidx) in self.col_idx_categorical.iter().enumerate() {
let cidx = new_col_idx[old_cidx];
let col_iter = (0..nrows).map(|r| x.get((r, old_cidx)).to_category());
let sencoder = &self.category_mappers[pidx];
let oh_series = col_iter.map(|c| sencoder.get_one_hot::<T, Vec<T>>(&c));
for (row, oh_vec) in oh_series.enumerate() {
match oh_vec {
None => {
let msg = format!("At least one value in column {old_cidx} doesn't conform to category definition");
return Err(Failed::transform(&msg[..]));
}
Some(v) => {
for (col_ofst, &val) in v.iter().enumerate() {
res.set((row, cidx + col_ofst), val);
}
}
}
}
}
let mut skip_idx_iter = self.col_idx_categorical.iter();
let mut cur_skip = skip_idx_iter.next();
for (old_p, &new_p) in new_col_idx.iter().enumerate() {
if let Some(&v) = cur_skip {
if v == old_p {
cur_skip = skip_idx_iter.next();
continue;
}
}
for r in 0..nrows {
let val = x.get((r, old_p));
res.set((r, new_p), *val);
}
}
Ok(res)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::linalg::basic::matrix::DenseMatrix;
use crate::preprocessing::series_encoder::CategoryMapper;
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn adjust_idxs() {
assert_eq!(find_new_idxs(0, &[], &[]), Vec::<usize>::new());
assert_eq!(find_new_idxs(3, &[3], &[1]), vec![0, 1, 4]);
}
fn build_cat_first_and_last() -> (DenseMatrix<f64>, DenseMatrix<f64>) {
let orig = DenseMatrix::from_2d_array(&[
&[1.0, 1.5, 3.0],
&[2.0, 1.5, 4.0],
&[1.0, 1.5, 5.0],
&[2.0, 1.5, 6.0],
]);
let oh_enc = DenseMatrix::from_2d_array(&[
&[1.0, 0.0, 1.5, 1.0, 0.0, 0.0, 0.0],
&[0.0, 1.0, 1.5, 0.0, 1.0, 0.0, 0.0],
&[1.0, 0.0, 1.5, 0.0, 0.0, 1.0, 0.0],
&[0.0, 1.0, 1.5, 0.0, 0.0, 0.0, 1.0],
]);
(orig, oh_enc)
}
fn build_fake_matrix() -> (DenseMatrix<f64>, DenseMatrix<f64>) {
let orig = DenseMatrix::from_2d_array(&[
&[1.5, 1.0, 1.5, 3.0],
&[1.5, 2.0, 1.5, 4.0],
&[1.5, 1.0, 1.5, 5.0],
&[1.5, 2.0, 1.5, 6.0],
]);
let oh_enc = DenseMatrix::from_2d_array(&[
&[1.5, 1.0, 0.0, 1.5, 1.0, 0.0, 0.0, 0.0],
&[1.5, 0.0, 1.0, 1.5, 0.0, 1.0, 0.0, 0.0],
&[1.5, 1.0, 0.0, 1.5, 0.0, 0.0, 1.0, 0.0],
&[1.5, 0.0, 1.0, 1.5, 0.0, 0.0, 0.0, 1.0],
]);
(orig, oh_enc)
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn hash_encode_f64_series() {
let series = vec![3.0, 1.0, 2.0, 1.0];
let hashable_series: Vec<CategoricalFloat> =
series.iter().map(|v| v.to_category()).collect();
let enc = CategoryMapper::from_positional_category_vec(hashable_series);
let inv = enc.invert_one_hot(vec![0.0, 0.0, 1.0]);
let orig_val: f64 = inv.unwrap().into();
assert_eq!(orig_val, 2.0);
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn test_fit() {
let (x, _) = build_fake_matrix();
let params = OneHotEncoderParams::from_cat_idx(&[1, 3]);
let oh_enc = OneHotEncoder::fit(&x, params).unwrap();
assert_eq!(oh_enc.category_mappers.len(), 2);
let num_cat: Vec<usize> = oh_enc
.category_mappers
.iter()
.map(|a| a.num_categories())
.collect();
assert_eq!(num_cat, vec![2, 4]);
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn matrix_transform_test() {
let (x, expected_x) = build_fake_matrix();
let params = OneHotEncoderParams::from_cat_idx(&[1, 3]);
let oh_enc = OneHotEncoder::fit(&x, params).unwrap();
let nm = oh_enc.transform(&x).unwrap();
assert_eq!(nm, expected_x);
let (x, expected_x) = build_cat_first_and_last();
let params = OneHotEncoderParams::from_cat_idx(&[0, 2]);
let oh_enc = OneHotEncoder::fit(&x, params).unwrap();
let nm = oh_enc.transform(&x).unwrap();
assert_eq!(nm, expected_x);
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn fail_on_bad_category() {
let m = DenseMatrix::from_2d_array(&[
&[1.0, 1.5, 3.0],
&[2.0, 1.5, 4.0],
&[1.0, 1.5, 5.0],
&[2.0, 1.5, 6.0],
]);
let params = OneHotEncoderParams::from_cat_idx(&[1]);
let result = OneHotEncoder::fit(&m, params);
assert!(result.is_err());
}
}