use std::fmt::Debug;
use std::marker::PhantomData;
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::algorithm::neighbour::bbd_tree::BBDTree;
use crate::api::{Predictor, UnsupervisedEstimator};
use crate::error::Failed;
use crate::linalg::basic::arrays::{Array1, Array2};
use crate::metrics::distance::euclidian::*;
use crate::numbers::basenum::Number;
use crate::rand_custom::get_rng_impl;
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct KMeans<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> {
k: usize,
_y: Vec<usize>,
size: Vec<usize>,
_distortion: f64,
centroids: Vec<Vec<f64>>,
_phantom_tx: PhantomData<TX>,
_phantom_ty: PhantomData<TY>,
_phantom_x: PhantomData<X>,
_phantom_y: PhantomData<Y>,
}
impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> PartialEq for KMeans<TX, TY, X, Y> {
fn eq(&self, other: &Self) -> bool {
if self.k != other.k
|| self.size != other.size
|| self.centroids.len() != other.centroids.len()
{
false
} else {
let n_centroids = self.centroids.len();
for i in 0..n_centroids {
if self.centroids[i].len() != other.centroids[i].len() {
return false;
}
for j in 0..self.centroids[i].len() {
if (self.centroids[i][j] - other.centroids[i][j]).abs() > std::f64::EPSILON {
return false;
}
}
}
true
}
}
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
pub struct KMeansParameters {
#[cfg_attr(feature = "serde", serde(default))]
pub k: usize,
#[cfg_attr(feature = "serde", serde(default))]
pub max_iter: usize,
#[cfg_attr(feature = "serde", serde(default))]
pub seed: Option<u64>,
}
impl KMeansParameters {
pub fn with_k(mut self, k: usize) -> Self {
self.k = k;
self
}
pub fn with_max_iter(mut self, max_iter: usize) -> Self {
self.max_iter = max_iter;
self
}
}
impl Default for KMeansParameters {
fn default() -> Self {
KMeansParameters {
k: 2,
max_iter: 100,
seed: Option::None,
}
}
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
pub struct KMeansSearchParameters {
#[cfg_attr(feature = "serde", serde(default))]
pub k: Vec<usize>,
#[cfg_attr(feature = "serde", serde(default))]
pub max_iter: Vec<usize>,
#[cfg_attr(feature = "serde", serde(default))]
pub seed: Vec<Option<u64>>,
}
pub struct KMeansSearchParametersIterator {
kmeans_search_parameters: KMeansSearchParameters,
current_k: usize,
current_max_iter: usize,
current_seed: usize,
}
impl IntoIterator for KMeansSearchParameters {
type Item = KMeansParameters;
type IntoIter = KMeansSearchParametersIterator;
fn into_iter(self) -> Self::IntoIter {
KMeansSearchParametersIterator {
kmeans_search_parameters: self,
current_k: 0,
current_max_iter: 0,
current_seed: 0,
}
}
}
impl Iterator for KMeansSearchParametersIterator {
type Item = KMeansParameters;
fn next(&mut self) -> Option<Self::Item> {
if self.current_k == self.kmeans_search_parameters.k.len()
&& self.current_max_iter == self.kmeans_search_parameters.max_iter.len()
&& self.current_seed == self.kmeans_search_parameters.seed.len()
{
return None;
}
let next = KMeansParameters {
k: self.kmeans_search_parameters.k[self.current_k],
max_iter: self.kmeans_search_parameters.max_iter[self.current_max_iter],
seed: self.kmeans_search_parameters.seed[self.current_seed],
};
if self.current_k + 1 < self.kmeans_search_parameters.k.len() {
self.current_k += 1;
} else if self.current_max_iter + 1 < self.kmeans_search_parameters.max_iter.len() {
self.current_k = 0;
self.current_max_iter += 1;
} else if self.current_seed + 1 < self.kmeans_search_parameters.seed.len() {
self.current_k = 0;
self.current_max_iter = 0;
self.current_seed += 1;
} else {
self.current_k += 1;
self.current_max_iter += 1;
self.current_seed += 1;
}
Some(next)
}
}
impl Default for KMeansSearchParameters {
fn default() -> Self {
let default_params = KMeansParameters::default();
KMeansSearchParameters {
k: vec![default_params.k],
max_iter: vec![default_params.max_iter],
seed: vec![default_params.seed],
}
}
}
impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>>
UnsupervisedEstimator<X, KMeansParameters> for KMeans<TX, TY, X, Y>
{
fn fit(x: &X, parameters: KMeansParameters) -> Result<Self, Failed> {
KMeans::fit(x, parameters)
}
}
impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> Predictor<X, Y>
for KMeans<TX, TY, X, Y>
{
fn predict(&self, x: &X) -> Result<Y, Failed> {
self.predict(x)
}
}
impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> KMeans<TX, TY, X, Y> {
pub fn fit(data: &X, parameters: KMeansParameters) -> Result<KMeans<TX, TY, X, Y>, Failed> {
let bbd = BBDTree::new(data);
if parameters.k < 2 {
return Err(Failed::fit(&format!(
"invalid number of clusters: {}",
parameters.k
)));
}
if parameters.max_iter == 0 {
return Err(Failed::fit(&format!(
"invalid maximum number of iterations: {}",
parameters.max_iter
)));
}
let (n, d) = data.shape();
let mut distortion = std::f64::MAX;
let mut y = KMeans::<TX, TY, X, Y>::kmeans_plus_plus(data, parameters.k, parameters.seed);
let mut size = vec![0; parameters.k];
let mut centroids = vec![vec![0f64; d]; parameters.k];
for i in 0..n {
size[y[i]] += 1;
}
for i in 0..n {
for j in 0..d {
centroids[y[i]][j] += data.get((i, j)).to_f64().unwrap();
}
}
for i in 0..parameters.k {
for j in 0..d {
centroids[i][j] /= size[i] as f64;
}
}
let mut sums = vec![vec![0f64; d]; parameters.k];
for _ in 1..=parameters.max_iter {
let dist = bbd.clustering(¢roids, &mut sums, &mut size, &mut y);
for i in 0..parameters.k {
if size[i] > 0 {
for j in 0..d {
centroids[i][j] = sums[i][j] / size[i] as f64;
}
}
}
if distortion <= dist {
break;
} else {
distortion = dist;
}
}
Ok(KMeans {
k: parameters.k,
_y: y,
size,
_distortion: distortion,
centroids,
_phantom_tx: PhantomData,
_phantom_ty: PhantomData,
_phantom_x: PhantomData,
_phantom_y: PhantomData,
})
}
pub fn predict(&self, x: &X) -> Result<Y, Failed> {
let (n, _) = x.shape();
let mut result = Y::zeros(n);
let mut row = vec![0f64; x.shape().1];
for i in 0..n {
let mut min_dist = std::f64::MAX;
let mut best_cluster = 0;
for j in 0..self.k {
x.get_row(i)
.iterator(0)
.zip(row.iter_mut())
.for_each(|(&x, r)| *r = x.to_f64().unwrap());
let dist = Euclidian::squared_distance(&row, &self.centroids[j]);
if dist < min_dist {
min_dist = dist;
best_cluster = j;
}
}
result.set(i, TY::from_usize(best_cluster).unwrap());
}
Ok(result)
}
fn kmeans_plus_plus(data: &X, k: usize, seed: Option<u64>) -> Vec<usize> {
let mut rng = get_rng_impl(seed);
let (n, _) = data.shape();
let mut y = vec![0; n];
let mut centroid: Vec<TX> = data
.get_row(rng.gen_range(0..n))
.iterator(0)
.cloned()
.collect();
let mut d = vec![std::f64::MAX; n];
let mut row = vec![TX::zero(); data.shape().1];
for j in 1..k {
for i in 0..n {
data.get_row(i)
.iterator(0)
.zip(row.iter_mut())
.for_each(|(&x, r)| *r = x);
let dist = Euclidian::squared_distance(&row, ¢roid);
if dist < d[i] {
d[i] = dist;
y[i] = j - 1;
}
}
let mut sum = 0f64;
for i in d.iter() {
sum += *i;
}
let cutoff = rng.gen::<f64>() * sum;
let mut cost = 0f64;
let mut index = 0;
while index < n {
cost += d[index];
if cost >= cutoff {
break;
}
index += 1;
}
centroid = data.get_row(index).iterator(0).cloned().collect();
}
for i in 0..n {
data.get_row(i)
.iterator(0)
.zip(row.iter_mut())
.for_each(|(&x, r)| *r = x);
let dist = Euclidian::squared_distance(&row, ¢roid);
if dist < d[i] {
d[i] = dist;
y[i] = k - 1;
}
}
y
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::linalg::basic::matrix::DenseMatrix;
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn invalid_k() {
let x = DenseMatrix::from_2d_array(&[&[1, 2, 3], &[4, 5, 6]]);
assert!(KMeans::<i32, i32, DenseMatrix<i32>, Vec<i32>>::fit(
&x,
KMeansParameters::default().with_k(0)
)
.is_err());
assert_eq!(
"Fit failed: invalid number of clusters: 1",
KMeans::<i32, i32, DenseMatrix<i32>, Vec<i32>>::fit(
&x,
KMeansParameters::default().with_k(1)
)
.unwrap_err()
.to_string()
);
}
#[test]
fn search_parameters() {
let parameters = KMeansSearchParameters {
k: vec![2, 4],
max_iter: vec![10, 100],
..Default::default()
};
let mut iter = parameters.into_iter();
let next = iter.next().unwrap();
assert_eq!(next.k, 2);
assert_eq!(next.max_iter, 10);
let next = iter.next().unwrap();
assert_eq!(next.k, 4);
assert_eq!(next.max_iter, 10);
let next = iter.next().unwrap();
assert_eq!(next.k, 2);
assert_eq!(next.max_iter, 100);
let next = iter.next().unwrap();
assert_eq!(next.k, 4);
assert_eq!(next.max_iter, 100);
assert!(iter.next().is_none());
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn fit_predict() {
let x = DenseMatrix::from_2d_array(&[
&[5.1, 3.5, 1.4, 0.2],
&[4.9, 3.0, 1.4, 0.2],
&[4.7, 3.2, 1.3, 0.2],
&[4.6, 3.1, 1.5, 0.2],
&[5.0, 3.6, 1.4, 0.2],
&[5.4, 3.9, 1.7, 0.4],
&[4.6, 3.4, 1.4, 0.3],
&[5.0, 3.4, 1.5, 0.2],
&[4.4, 2.9, 1.4, 0.2],
&[4.9, 3.1, 1.5, 0.1],
&[7.0, 3.2, 4.7, 1.4],
&[6.4, 3.2, 4.5, 1.5],
&[6.9, 3.1, 4.9, 1.5],
&[5.5, 2.3, 4.0, 1.3],
&[6.5, 2.8, 4.6, 1.5],
&[5.7, 2.8, 4.5, 1.3],
&[6.3, 3.3, 4.7, 1.6],
&[4.9, 2.4, 3.3, 1.0],
&[6.6, 2.9, 4.6, 1.3],
&[5.2, 2.7, 3.9, 1.4],
]);
let kmeans = KMeans::fit(&x, Default::default()).unwrap();
let y: Vec<usize> = kmeans.predict(&x).unwrap();
for (i, _y_i) in y.iter().enumerate() {
assert_eq!({ y[i] }, kmeans._y[i]);
}
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
#[cfg(feature = "serde")]
fn serde() {
let x = DenseMatrix::from_2d_array(&[
&[5.1, 3.5, 1.4, 0.2],
&[4.9, 3.0, 1.4, 0.2],
&[4.7, 3.2, 1.3, 0.2],
&[4.6, 3.1, 1.5, 0.2],
&[5.0, 3.6, 1.4, 0.2],
&[5.4, 3.9, 1.7, 0.4],
&[4.6, 3.4, 1.4, 0.3],
&[5.0, 3.4, 1.5, 0.2],
&[4.4, 2.9, 1.4, 0.2],
&[4.9, 3.1, 1.5, 0.1],
&[7.0, 3.2, 4.7, 1.4],
&[6.4, 3.2, 4.5, 1.5],
&[6.9, 3.1, 4.9, 1.5],
&[5.5, 2.3, 4.0, 1.3],
&[6.5, 2.8, 4.6, 1.5],
&[5.7, 2.8, 4.5, 1.3],
&[6.3, 3.3, 4.7, 1.6],
&[4.9, 2.4, 3.3, 1.0],
&[6.6, 2.9, 4.6, 1.3],
&[5.2, 2.7, 3.9, 1.4],
]);
let kmeans: KMeans<f32, f32, DenseMatrix<f32>, Vec<f32>> =
KMeans::fit(&x, Default::default()).unwrap();
let deserialized_kmeans: KMeans<f32, f32, DenseMatrix<f32>, Vec<f32>> =
serde_json::from_str(&serde_json::to_string(&kmeans).unwrap()).unwrap();
assert_eq!(kmeans, deserialized_kmeans);
}
}