use std::cell::{Ref, RefCell};
use std::fmt::Debug;
use std::marker::PhantomData;
use num::Bounded;
use num_traits::float::Float;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::api::{PredictorBorrow, SupervisedEstimatorBorrow};
use crate::error::{Failed, FailedError};
use crate::linalg::basic::arrays::{Array1, Array2, MutArray};
use crate::numbers::basenum::Number;
use crate::numbers::floatnum::FloatNumber;
use crate::svm::Kernel;
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct SVRParameters<T: Number + FloatNumber + PartialOrd> {
pub eps: T,
pub c: T,
pub tol: T,
#[cfg_attr(
all(feature = "serde", target_arch = "wasm32"),
serde(skip_serializing, skip_deserializing)
)]
pub kernel: Option<Box<dyn Kernel>>,
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct SVR<'a, T: Number + FloatNumber + PartialOrd, X: Array2<T>, Y: Array1<T>> {
instances: Option<Vec<Vec<f64>>>,
#[cfg_attr(feature = "serde", serde(skip_deserializing))]
parameters: Option<&'a SVRParameters<T>>,
w: Option<Vec<T>>,
b: T,
phantom: PhantomData<(X, Y)>,
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
struct SupportVector<T> {
index: usize,
x: Vec<f64>,
alpha: [T; 2],
grad: [T; 2],
k: f64,
}
struct Optimizer<'a, T: Number + FloatNumber + PartialOrd> {
tol: T,
c: T,
parameters: Option<&'a SVRParameters<T>>,
svmin: usize,
svmax: usize,
gmin: T,
gmax: T,
gminindex: usize,
gmaxindex: usize,
tau: T,
sv: Vec<SupportVector<T>>,
max_iterations: usize,
}
struct Cache<T: Clone> {
data: Vec<RefCell<Option<Vec<T>>>>,
}
impl<T: Number + FloatNumber + PartialOrd> SVRParameters<T> {
pub fn with_eps(mut self, eps: T) -> Self {
self.eps = eps;
self
}
pub fn with_c(mut self, c: T) -> Self {
self.c = c;
self
}
pub fn with_tol(mut self, tol: T) -> Self {
self.tol = tol;
self
}
pub fn with_kernel<K: Kernel + 'static>(mut self, kernel: K) -> Self {
self.kernel = Some(Box::new(kernel));
self
}
}
impl<T: Number + FloatNumber + PartialOrd> Default for SVRParameters<T> {
fn default() -> Self {
SVRParameters {
eps: T::from_f64(0.1).unwrap(),
c: T::one(),
tol: T::from_f64(1e-3).unwrap(),
kernel: Option::None,
}
}
}
impl<'a, T: Number + FloatNumber + PartialOrd, X: Array2<T>, Y: Array1<T>>
SupervisedEstimatorBorrow<'a, X, Y, SVRParameters<T>> for SVR<'a, T, X, Y>
{
fn new() -> Self {
Self {
instances: Option::None,
parameters: Option::None,
w: Option::None,
b: T::zero(),
phantom: PhantomData,
}
}
fn fit(x: &'a X, y: &'a Y, parameters: &'a SVRParameters<T>) -> Result<Self, Failed> {
SVR::fit(x, y, parameters)
}
}
impl<'a, T: Number + FloatNumber + PartialOrd, X: Array2<T>, Y: Array1<T>> PredictorBorrow<'a, X, T>
for SVR<'a, T, X, Y>
{
fn predict(&self, x: &'a X) -> Result<Vec<T>, Failed> {
self.predict(x)
}
}
impl<'a, T: Number + FloatNumber + PartialOrd, X: Array2<T>, Y: Array1<T>> SVR<'a, T, X, Y> {
pub fn fit(
x: &'a X,
y: &'a Y,
parameters: &'a SVRParameters<T>,
) -> Result<SVR<'a, T, X, Y>, Failed> {
let (n, _) = x.shape();
if n != y.shape() {
return Err(Failed::fit(
"Number of rows of X doesn\'t match number of rows of Y",
));
}
if parameters.kernel.is_none() {
return Err(Failed::because(
FailedError::ParametersError,
"kernel should be defined at this point, please use `with_kernel()`",
));
}
let optimizer: Optimizer<'a, T> = Optimizer::new(x, y, parameters);
let (support_vectors, weight, b) = optimizer.smo();
Ok(SVR {
instances: Some(support_vectors),
parameters: Some(parameters),
w: Some(weight),
b,
phantom: PhantomData,
})
}
pub fn predict(&self, x: &'a X) -> Result<Vec<T>, Failed> {
let (n, _) = x.shape();
let mut y_hat: Vec<T> = Vec::<T>::zeros(n);
for i in 0..n {
y_hat.set(
i,
self.predict_for_row(Vec::from_iterator(x.get_row(i).iterator(0).copied(), n)),
);
}
Ok(y_hat)
}
pub(crate) fn predict_for_row(&self, x: Vec<T>) -> T {
let mut f = self.b;
for i in 0..self.instances.as_ref().unwrap().len() {
f += self.w.as_ref().unwrap()[i]
* T::from(
self.parameters
.as_ref()
.unwrap()
.kernel
.as_ref()
.unwrap()
.apply(
&x.iter().map(|e| e.to_f64().unwrap()).collect(),
&self.instances.as_ref().unwrap()[i],
)
.unwrap(),
)
.unwrap()
}
T::from(f).unwrap()
}
}
impl<'a, T: Number + FloatNumber + PartialOrd, X: Array2<T>, Y: Array1<T>> PartialEq
for SVR<'a, T, X, Y>
{
fn eq(&self, other: &Self) -> bool {
if (self.b - other.b).abs() > T::epsilon() * T::two()
|| self.w.as_ref().unwrap().len() != other.w.as_ref().unwrap().len()
|| self.instances.as_ref().unwrap().len() != other.instances.as_ref().unwrap().len()
{
false
} else {
for i in 0..self.w.as_ref().unwrap().len() {
if (self.w.as_ref().unwrap()[i] - other.w.as_ref().unwrap()[i]).abs() > T::epsilon()
{
return false;
}
}
for i in 0..self.instances.as_ref().unwrap().len() {
if !self.instances.as_ref().unwrap()[i]
.approximate_eq(&other.instances.as_ref().unwrap()[i], f64::epsilon())
{
return false;
}
}
true
}
}
}
impl<T: Number + FloatNumber + PartialOrd> SupportVector<T> {
fn new(i: usize, x: Vec<f64>, y: T, eps: T, k: f64) -> SupportVector<T> {
SupportVector {
index: i,
x,
grad: [eps + y, eps - y],
k,
alpha: [T::zero(), T::zero()],
}
}
}
impl<'a, T: Number + FloatNumber + PartialOrd> Optimizer<'a, T> {
fn new<X: Array2<T>, Y: Array1<T>>(
x: &'a X,
y: &'a Y,
parameters: &'a SVRParameters<T>,
) -> Optimizer<'a, T> {
let (n, _) = x.shape();
let mut support_vectors: Vec<SupportVector<T>> = Vec::with_capacity(n);
for i in 0..n {
let k = parameters
.kernel
.as_ref()
.unwrap()
.apply(
&Vec::from_iterator(x.iterator(0).map(|e| e.to_f64().unwrap()), n),
&Vec::from_iterator(x.iterator(0).map(|e| e.to_f64().unwrap()), n),
)
.unwrap();
support_vectors.push(SupportVector::<T>::new(
i,
Vec::from_iterator(x.get_row(i).iterator(0).map(|e| e.to_f64().unwrap()), n),
T::from(*y.get(i)).unwrap(),
parameters.eps,
k,
));
}
Optimizer {
tol: parameters.tol,
c: parameters.c,
parameters: Some(parameters),
svmin: 0,
svmax: 0,
gmin: <T as Bounded>::max_value(),
gmax: <T as Bounded>::min_value(),
gminindex: 0,
gmaxindex: 0,
tau: T::from_f64(1e-12).unwrap(),
sv: support_vectors,
max_iterations: 49999,
}
}
fn find_min_max_gradient(&mut self) {
self.gmin = <T as Bounded>::max_value();
self.gmax = <T as Bounded>::min_value();
for i in 0..self.sv.len() {
let v = &self.sv[i];
let g = -v.grad[0];
let a = v.alpha[0];
if g < self.gmin && a > T::zero() {
self.gmin = g;
self.gminindex = 0;
self.svmin = i;
}
if g > self.gmax && a < self.c {
self.gmax = g;
self.gmaxindex = 0;
self.svmax = i;
}
let g = v.grad[1];
let a = v.alpha[1];
if g < self.gmin && a < self.c {
self.gmin = g;
self.gminindex = 1;
self.svmin = i;
}
if g > self.gmax && a > T::zero() {
self.gmax = g;
self.gmaxindex = 1;
self.svmax = i;
}
}
}
fn smo(mut self) -> (Vec<Vec<f64>>, Vec<T>, T) {
let cache: Cache<f64> = Cache::new(self.sv.len());
let mut n_iteration = 0usize;
self.find_min_max_gradient();
while self.gmax - self.gmin > self.tol {
if n_iteration > self.max_iterations {
break;
}
let v1 = self.svmax;
let i = self.gmaxindex;
let old_alpha_i = self.sv[v1].alpha[i];
let k1 = cache.get(self.sv[v1].index, || {
self.sv
.iter()
.map(|vi| {
self.parameters
.unwrap()
.kernel
.as_ref()
.unwrap()
.apply(&self.sv[v1].x, &vi.x)
.unwrap()
})
.collect()
});
let mut v2 = self.svmin;
let mut j = self.gminindex;
let mut old_alpha_j = self.sv[v2].alpha[j];
let mut best = T::zero();
let gi = if i == 0 {
-self.sv[v1].grad[0]
} else {
self.sv[v1].grad[1]
};
for jj in 0..self.sv.len() {
let v = &self.sv[jj];
let mut curv = self.sv[v1].k + v.k - 2f64 * k1[v.index];
if curv <= 0f64 {
curv = self.tau.to_f64().unwrap();
}
let mut gj = -v.grad[0];
if v.alpha[0] > T::zero() && gj < gi {
let gain = -((gi - gj) * (gi - gj)) / T::from(curv).unwrap();
if gain < best {
best = gain;
v2 = jj;
j = 0;
old_alpha_j = self.sv[v2].alpha[0];
}
}
gj = v.grad[1];
if v.alpha[1] < self.c && gj < gi {
let gain = -((gi - gj) * (gi - gj)) / T::from(curv).unwrap();
if gain < best {
best = gain;
v2 = jj;
j = 1;
old_alpha_j = self.sv[v2].alpha[1];
}
}
}
let k2 = cache.get(self.sv[v2].index, || {
self.sv
.iter()
.map(|vi| {
self.parameters
.unwrap()
.kernel
.as_ref()
.unwrap()
.apply(&self.sv[v2].x, &vi.x)
.unwrap()
})
.collect()
});
let mut curv = self.sv[v1].k + self.sv[v2].k - 2f64 * k1[self.sv[v2].index];
if curv <= 0f64 {
curv = self.tau.to_f64().unwrap();
}
if i != j {
let delta = (-self.sv[v1].grad[i] - self.sv[v2].grad[j]) / T::from(curv).unwrap();
let diff = self.sv[v1].alpha[i] - self.sv[v2].alpha[j];
self.sv[v1].alpha[i] += delta;
self.sv[v2].alpha[j] += delta;
if diff > T::zero() {
if self.sv[v2].alpha[j] < T::zero() {
self.sv[v2].alpha[j] = T::zero();
self.sv[v1].alpha[i] = diff;
}
} else if self.sv[v1].alpha[i] < T::zero() {
self.sv[v1].alpha[i] = T::zero();
self.sv[v2].alpha[j] = -diff;
}
if diff > T::zero() {
if self.sv[v1].alpha[i] > self.c {
self.sv[v1].alpha[i] = self.c;
self.sv[v2].alpha[j] = self.c - diff;
}
} else if self.sv[v2].alpha[j] > self.c {
self.sv[v2].alpha[j] = self.c;
self.sv[v1].alpha[i] = self.c + diff;
}
} else {
let delta = (self.sv[v1].grad[i] - self.sv[v2].grad[j]) / T::from(curv).unwrap();
let sum = self.sv[v1].alpha[i] + self.sv[v2].alpha[j];
self.sv[v1].alpha[i] -= delta;
self.sv[v2].alpha[j] += delta;
if sum > self.c {
if self.sv[v1].alpha[i] > self.c {
self.sv[v1].alpha[i] = self.c;
self.sv[v2].alpha[j] = sum - self.c;
}
} else if self.sv[v2].alpha[j] < T::zero() {
self.sv[v2].alpha[j] = T::zero();
self.sv[v1].alpha[i] = sum;
}
if sum > self.c {
if self.sv[v2].alpha[j] > self.c {
self.sv[v2].alpha[j] = self.c;
self.sv[v1].alpha[i] = sum - self.c;
}
} else if self.sv[v1].alpha[i] < T::zero() {
self.sv[v1].alpha[i] = T::zero();
self.sv[v2].alpha[j] = sum;
}
}
let delta_alpha_i = self.sv[v1].alpha[i] - old_alpha_i;
let delta_alpha_j = self.sv[v2].alpha[j] - old_alpha_j;
let si = T::two() * T::from_usize(i).unwrap() - T::one();
let sj = T::two() * T::from_usize(j).unwrap() - T::one();
for v in self.sv.iter_mut() {
v.grad[0] -= si * T::from(k1[v.index]).unwrap() * delta_alpha_i
+ sj * T::from(k2[v.index]).unwrap() * delta_alpha_j;
v.grad[1] += si * T::from(k1[v.index]).unwrap() * delta_alpha_i
+ sj * T::from(k2[v.index]).unwrap() * delta_alpha_j;
}
self.find_min_max_gradient();
n_iteration += 1;
}
let b = -(self.gmax + self.gmin) / T::two();
let mut support_vectors: Vec<Vec<f64>> = Vec::new();
let mut w: Vec<T> = Vec::new();
for v in self.sv {
if v.alpha[0] != v.alpha[1] {
support_vectors.push(v.x);
w.push(v.alpha[1] - v.alpha[0]);
}
}
(support_vectors, w, b)
}
}
impl<T: Clone> Cache<T> {
fn new(n: usize) -> Cache<T> {
Cache {
data: vec![RefCell::new(None); n],
}
}
fn get<F: Fn() -> Vec<T>>(&self, i: usize, or: F) -> Ref<'_, Vec<T>> {
if self.data[i].borrow().is_none() {
self.data[i].replace(Some(or()));
}
Ref::map(self.data[i].borrow(), |v| v.as_ref().unwrap())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::linalg::basic::matrix::DenseMatrix;
use crate::metrics::mean_squared_error;
use crate::svm::Kernels;
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn svr_fit_predict() {
let x = DenseMatrix::from_2d_array(&[
&[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
&[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
&[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
&[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
&[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
&[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
&[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
&[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
&[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
&[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
&[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
&[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
&[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
&[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
&[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
&[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
]);
let y: Vec<f64> = vec![
83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
114.2, 115.7, 116.9,
];
let knl = Kernels::linear();
let y_hat = SVR::fit(
&x,
&y,
&SVRParameters::default()
.with_eps(2.0)
.with_c(10.0)
.with_kernel(knl),
)
.and_then(|lr| lr.predict(&x))
.unwrap();
let t = mean_squared_error(&y_hat, &y);
println!("{:?}", t);
assert!(t < 2.5);
}
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
#[cfg(all(feature = "serde", not(target_arch = "wasm32")))]
fn svr_serde() {
let x = DenseMatrix::from_2d_array(&[
&[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
&[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
&[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
&[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
&[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
&[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
&[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
&[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
&[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
&[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
&[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
&[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
&[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
&[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
&[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
&[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
]);
let y: Vec<f64> = vec![
83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
114.2, 115.7, 116.9,
];
let knl = Kernels::rbf().with_gamma(0.7);
let params = SVRParameters::default().with_kernel(knl);
let svr = SVR::fit(&x, &y, ¶ms).unwrap();
let deserialized_svr: SVR<f64, DenseMatrix<f64>, _> =
serde_json::from_str(&serde_json::to_string(&svr).unwrap()).unwrap();
assert_eq!(svr, deserialized_svr);
}
}