1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
//! # Random Forest Regressor
//! A random forest is an ensemble estimator that fits multiple [decision trees](../../tree/index.html) to random subsets of the dataset and averages predictions
//! to improve the predictive accuracy and control over-fitting. See [ensemble models](../index.html) for more details.
//!
//! Bigger number of estimators in general improves performance of the algorithm with an increased cost of training time.
//! The random sample of _m_ predictors is typically set to be \\(\sqrt{p}\\) from the full set of _p_ predictors.
//!
//! Example:
//!
//! ```
//! use smartcore::linalg::naive::dense_matrix::*;
//! use smartcore::ensemble::random_forest_regressor::*;
//!
//! // Longley dataset (https://www.statsmodels.org/stable/datasets/generated/longley.html)
//! let x = DenseMatrix::from_2d_array(&[
//!             &[234.289, 235.6, 159., 107.608, 1947., 60.323],
//!             &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
//!             &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
//!             &[284.599, 335.1, 165., 110.929, 1950., 61.187],
//!             &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
//!             &[346.999, 193.2, 359.4, 113.27, 1952., 63.639],
//!             &[365.385, 187., 354.7, 115.094, 1953., 64.989],
//!             &[363.112, 357.8, 335., 116.219, 1954., 63.761],
//!             &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
//!             &[419.18, 282.2, 285.7, 118.734, 1956., 67.857],
//!             &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
//!             &[444.546, 468.1, 263.7, 121.95, 1958., 66.513],
//!             &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
//!             &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
//!             &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
//!             &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
//!         ]);
//! let y = vec![
//!             83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2,
//!             104.6, 108.4, 110.8, 112.6, 114.2, 115.7, 116.9
//!         ];
//!
//! let regressor = RandomForestRegressor::fit(&x, &y, Default::default()).unwrap();
//!
//! let y_hat = regressor.predict(&x).unwrap(); // use the same data for prediction
//! ```
//!
//! <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
//! <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>

use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use std::default::Default;
use std::fmt::Debug;

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::api::{Predictor, SupervisedEstimator};
use crate::error::{Failed, FailedError};
use crate::linalg::Matrix;
use crate::math::num::RealNumber;
use crate::tree::decision_tree_regressor::{
    DecisionTreeRegressor, DecisionTreeRegressorParameters,
};

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
/// Parameters of the Random Forest Regressor
/// Some parameters here are passed directly into base estimator.
pub struct RandomForestRegressorParameters {
    /// Tree max depth. See [Decision Tree Regressor](../../tree/decision_tree_regressor/index.html)
    pub max_depth: Option<u16>,
    /// The minimum number of samples required to be at a leaf node. See [Decision Tree Regressor](../../tree/decision_tree_regressor/index.html)
    pub min_samples_leaf: usize,
    /// The minimum number of samples required to split an internal node. See [Decision Tree Regressor](../../tree/decision_tree_regressor/index.html)
    pub min_samples_split: usize,
    /// The number of trees in the forest.
    pub n_trees: usize,
    /// Number of random sample of predictors to use as split candidates.
    pub m: Option<usize>,
    /// Whether to keep samples used for tree generation. This is required for OOB prediction.
    pub keep_samples: bool,
    /// Seed used for bootstrap sampling and feature selection for each tree.
    pub seed: u64,
}

/// Random Forest Regressor
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct RandomForestRegressor<T: RealNumber> {
    _parameters: RandomForestRegressorParameters,
    trees: Vec<DecisionTreeRegressor<T>>,
    samples: Option<Vec<Vec<bool>>>,
}

impl RandomForestRegressorParameters {
    /// Tree max depth. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub fn with_max_depth(mut self, max_depth: u16) -> Self {
        self.max_depth = Some(max_depth);
        self
    }
    /// The minimum number of samples required to be at a leaf node. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub fn with_min_samples_leaf(mut self, min_samples_leaf: usize) -> Self {
        self.min_samples_leaf = min_samples_leaf;
        self
    }
    /// The minimum number of samples required to split an internal node. See [Decision Tree Classifier](../../tree/decision_tree_classifier/index.html)
    pub fn with_min_samples_split(mut self, min_samples_split: usize) -> Self {
        self.min_samples_split = min_samples_split;
        self
    }
    /// The number of trees in the forest.
    pub fn with_n_trees(mut self, n_trees: usize) -> Self {
        self.n_trees = n_trees;
        self
    }
    /// Number of random sample of predictors to use as split candidates.
    pub fn with_m(mut self, m: usize) -> Self {
        self.m = Some(m);
        self
    }

    /// Whether to keep samples used for tree generation. This is required for OOB prediction.
    pub fn with_keep_samples(mut self, keep_samples: bool) -> Self {
        self.keep_samples = keep_samples;
        self
    }

    /// Seed used for bootstrap sampling and feature selection for each tree.
    pub fn with_seed(mut self, seed: u64) -> Self {
        self.seed = seed;
        self
    }
}
impl Default for RandomForestRegressorParameters {
    fn default() -> Self {
        RandomForestRegressorParameters {
            max_depth: None,
            min_samples_leaf: 1,
            min_samples_split: 2,
            n_trees: 10,
            m: Option::None,
            keep_samples: false,
            seed: 0,
        }
    }
}

impl<T: RealNumber> PartialEq for RandomForestRegressor<T> {
    fn eq(&self, other: &Self) -> bool {
        if self.trees.len() != other.trees.len() {
            false
        } else {
            for i in 0..self.trees.len() {
                if self.trees[i] != other.trees[i] {
                    return false;
                }
            }
            true
        }
    }
}

impl<T: RealNumber, M: Matrix<T>>
    SupervisedEstimator<M, M::RowVector, RandomForestRegressorParameters>
    for RandomForestRegressor<T>
{
    fn fit(
        x: &M,
        y: &M::RowVector,
        parameters: RandomForestRegressorParameters,
    ) -> Result<Self, Failed> {
        RandomForestRegressor::fit(x, y, parameters)
    }
}

impl<T: RealNumber, M: Matrix<T>> Predictor<M, M::RowVector> for RandomForestRegressor<T> {
    fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        self.predict(x)
    }
}

impl<T: RealNumber> RandomForestRegressor<T> {
    /// Build a forest of trees from the training set.
    /// * `x` - _NxM_ matrix with _N_ observations and _M_ features in each observation.
    /// * `y` - the target class values
    pub fn fit<M: Matrix<T>>(
        x: &M,
        y: &M::RowVector,
        parameters: RandomForestRegressorParameters,
    ) -> Result<RandomForestRegressor<T>, Failed> {
        let (n_rows, num_attributes) = x.shape();

        let mtry = parameters
            .m
            .unwrap_or((num_attributes as f64).sqrt().floor() as usize);

        let mut rng = StdRng::seed_from_u64(parameters.seed);
        let mut trees: Vec<DecisionTreeRegressor<T>> = Vec::new();

        let mut maybe_all_samples: Option<Vec<Vec<bool>>> = Option::None;
        if parameters.keep_samples {
            maybe_all_samples = Some(Vec::new());
        }

        for _ in 0..parameters.n_trees {
            let samples = RandomForestRegressor::<T>::sample_with_replacement(n_rows, &mut rng);
            if let Some(ref mut all_samples) = maybe_all_samples {
                all_samples.push(samples.iter().map(|x| *x != 0).collect())
            }
            let params = DecisionTreeRegressorParameters {
                max_depth: parameters.max_depth,
                min_samples_leaf: parameters.min_samples_leaf,
                min_samples_split: parameters.min_samples_split,
            };
            let tree =
                DecisionTreeRegressor::fit_weak_learner(x, y, samples, mtry, params, &mut rng)?;
            trees.push(tree);
        }

        Ok(RandomForestRegressor {
            _parameters: parameters,
            trees,
            samples: maybe_all_samples,
        })
    }

    /// Predict class for `x`
    /// * `x` - _KxM_ data where _K_ is number of observations and _M_ is number of features.
    pub fn predict<M: Matrix<T>>(&self, x: &M) -> Result<M::RowVector, Failed> {
        let mut result = M::zeros(1, x.shape().0);

        let (n, _) = x.shape();

        for i in 0..n {
            result.set(0, i, self.predict_for_row(x, i));
        }

        Ok(result.to_row_vector())
    }

    fn predict_for_row<M: Matrix<T>>(&self, x: &M, row: usize) -> T {
        let n_trees = self.trees.len();

        let mut result = T::zero();

        for tree in self.trees.iter() {
            result += tree.predict_for_row(x, row);
        }

        result / T::from(n_trees).unwrap()
    }

    /// Predict OOB classes for `x`. `x` is expected to be equal to the dataset used in training.
    pub fn predict_oob<M: Matrix<T>>(&self, x: &M) -> Result<M::RowVector, Failed> {
        let (n, _) = x.shape();
        if self.samples.is_none() {
            Err(Failed::because(
                FailedError::PredictFailed,
                "Need samples=true for OOB predictions.",
            ))
        } else if self.samples.as_ref().unwrap()[0].len() != n {
            Err(Failed::because(
                FailedError::PredictFailed,
                "Prediction matrix must match matrix used in training for OOB predictions.",
            ))
        } else {
            let mut result = M::zeros(1, n);

            for i in 0..n {
                result.set(0, i, self.predict_for_row_oob(x, i));
            }

            Ok(result.to_row_vector())
        }
    }

    fn predict_for_row_oob<M: Matrix<T>>(&self, x: &M, row: usize) -> T {
        let mut n_trees = 0;
        let mut result = T::zero();

        for (tree, samples) in self.trees.iter().zip(self.samples.as_ref().unwrap()) {
            if !samples[row] {
                result += tree.predict_for_row(x, row);
                n_trees += 1;
            }
        }

        // TODO: What to do if there are no oob trees?
        result / T::from(n_trees).unwrap()
    }

    fn sample_with_replacement(nrows: usize, rng: &mut impl Rng) -> Vec<usize> {
        let mut samples = vec![0; nrows];
        for _ in 0..nrows {
            let xi = rng.gen_range(0..nrows);
            samples[xi] += 1;
        }
        samples
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::linalg::naive::dense_matrix::DenseMatrix;
    use crate::metrics::mean_absolute_error;

    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    #[test]
    fn fit_longley() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159., 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165., 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.27, 1952., 63.639],
            &[365.385, 187., 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335., 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.18, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.95, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ]);
        let y = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let y_hat = RandomForestRegressor::fit(
            &x,
            &y,
            RandomForestRegressorParameters {
                max_depth: None,
                min_samples_leaf: 1,
                min_samples_split: 2,
                n_trees: 1000,
                m: Option::None,
                keep_samples: false,
                seed: 87,
            },
        )
        .and_then(|rf| rf.predict(&x))
        .unwrap();

        assert!(mean_absolute_error(&y, &y_hat) < 1.0);
    }

    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    #[test]
    fn fit_predict_longley_oob() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159., 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165., 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.27, 1952., 63.639],
            &[365.385, 187., 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335., 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.18, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.95, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ]);
        let y = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let regressor = RandomForestRegressor::fit(
            &x,
            &y,
            RandomForestRegressorParameters {
                max_depth: None,
                min_samples_leaf: 1,
                min_samples_split: 2,
                n_trees: 1000,
                m: Option::None,
                keep_samples: true,
                seed: 87,
            },
        )
        .unwrap();

        let y_hat = regressor.predict(&x).unwrap();
        let y_hat_oob = regressor.predict_oob(&x).unwrap();

        assert!(mean_absolute_error(&y, &y_hat) < mean_absolute_error(&y, &y_hat_oob));
    }

    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    #[test]
    #[cfg(feature = "serde")]
    fn serde() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159., 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165., 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.27, 1952., 63.639],
            &[365.385, 187., 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335., 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.18, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.95, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ]);
        let y = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let forest = RandomForestRegressor::fit(&x, &y, Default::default()).unwrap();

        let deserialized_forest: RandomForestRegressor<f64> =
            bincode::deserialize(&bincode::serialize(&forest).unwrap()).unwrap();

        assert_eq!(forest, deserialized_forest);
    }
}