1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
#![allow(dead_code)]
//! Storing vectors within vectors is convenient but means that each
//! stored vector will allocate on the heap and drop when removed. SlicedVec
//! stores constant-length segments within a single vector so that `push`
//! within the storage capacity will not allocate and `truncate` will not
//! deallocate from the heap. Benchmarks indicate that this strategy is not
//! always faster for repeated cycles of `push` and `swap_remove`. This is
//! likely because the overhead of swapping a larger number of elements. `Vec`
//! within `Vec` only has to swap the pointers of the stored `Vec` objects
//! whereas `SlicedVec` has to swap an entire segment of values. In a few cases,
//! `SlicedVec` has proven about twice as fast, but you will need to test your
//! cases. `SlicedVec` is nonetheless convenient for organizing segmented storage,
//! such as a collection of image rows, and so on.
//!
//! # Example
//!
//! ```
//! use rand::{rngs::SmallRng, Rng, SeedableRng};
//! use slicedvec::SlicedVec;
//! let mut rng = SmallRng::from_entropy();
//! let mut x1 = SlicedVec::with_capacity(1000, 20);
//! x1.push_vec(
//! std::iter::repeat_with(|| rng.gen())
//! .take(20 * 1000)
//! .collect::<Vec<_>>(),
//! );
//! let x1_insert: Vec<Vec<usize>> =
//! std::iter::repeat_with(|| std::iter::repeat_with(|| rng.gen()).take(20).collect())
//! .take(500)
//! .collect();
//! for i in 0..500 { x1.swap_truncate(i) }
//! for i in 0..500 { x1.push(&x1_insert[i]) }
//! ```
use std::{
collections::BTreeSet,
ops::{Index, IndexMut, Range},
ptr,
slice::{Iter, IterMut},
};
/// A segmented vector for iterating over slices of constant length.
#[derive(Debug)]
pub struct SlicedVec<T>
where
T: Copy + Clone,
{
storage: Vec<T>,
segment_len: usize,
}
impl<T> SlicedVec<T>
where
T: Copy + Clone,
{
/// Initialize a `SlicedVec` and set the segment size.
///
/// Panics if `segment_len` is zero.
pub fn new(segment_len: usize) -> Self {
assert_ne!(segment_len, 0);
Self {
storage: Vec::new(),
segment_len,
}
}
/// Initialize a `SlicedVec` and set the capacity and segment size.
///
/// Panics if `segment_len` is zero.
pub fn with_capacity(size: usize, segment_len: usize) -> Self {
assert_ne!(segment_len, 0);
Self {
storage: Vec::with_capacity(size * segment_len),
segment_len,
}
}
/// Get the internal segment length
pub fn segment_len(&self) -> usize {
self.segment_len
}
/// Returns the number of internal segments
pub fn len(&self) -> usize {
self.storage.len() / self.segment_len
}
/// Get the capacity in number of segments
pub fn capacity(&self) -> usize {
self.storage_capacity() / self.segment_len
}
/// Returns the length of the underlying storage
pub fn storage_len(&self) -> usize {
self.storage.len()
}
/// Get the capacity of the underlying storage
pub fn storage_capacity(&self) -> usize {
self.storage.capacity()
}
/// Append the contents of another `SlicedVec`.
///
/// Complexity is the length of `other`, plus any
/// allocation required. `other` is drained after call.
///
/// # Example
///
/// ```
/// use slicedvec::{slicedvec, SlicedVec};
/// let mut a = slicedvec![[1, 2, 3], [4, 5, 6]];
/// let mut b = slicedvec![[7, 8, 9], [3, 2, 1]];
/// a.append(&mut b);
/// assert_eq!(a.len(), 4);
/// assert_eq!(b.len(), 0);
/// ```
///
/// Panics if the segment size of `other` is different.
pub fn append(&mut self, other: &mut Self) {
assert_eq!(other.segment_len, self.segment_len);
self.storage.append(&mut other.storage)
}
/// Insert a slice at position `index`.
///
/// Complexity is linear in `storage_len`.
///
/// Panics if `index` is out of bounds or if the
/// length of `segment` is not the native segment
/// size of the `SlicedVec`.
pub fn insert(&mut self, index: usize, segment: &[T]) {
assert!(index < self.len());
assert_eq!(segment.len(), self.segment_len);
let orig_last_index = self.last_index();
self.storage.extend_from_within(self.storage_range_last());
if index < orig_last_index {
let src = self.storage_range_range(index, orig_last_index - 1);
let dst = self.storage_begin(index + 1);
self.storage.copy_within(src, dst);
}
unsafe { self.overwrite(index, segment) }
}
/// Add one or more segments to the end.
///
/// Complexity is amortized the segment size.
///
/// Panics if the length of the slice is not
/// a multiple of the segment length.
///
/// # Example
///
/// ```
/// use slicedvec::*;
/// let mut a = slicedvec![[1, 2, 3]];
/// a.push(&[4, 5, 6, 7, 8, 9]); // any multiple of segment length
/// assert_eq!(a.len(), 3);
/// assert_eq!(a.storage_len(), 9);
/// ```
///
pub fn push(&mut self, segment: &[T]) {
assert!(self.is_valid_length(segment));
self.storage.extend_from_slice(segment)
}
/// Add one or more segments contained in a `Vec`.
///
/// Complexity is amortized the length of
/// the slice.
///
/// Panics if the length of the slice is not
/// a multiple of the segment length.
pub fn push_vec(&mut self, segment: Vec<T>) {
self.push(segment.as_slice())
}
/// Get a reference to a segment.
///
/// Returns `None` if `index` is out of range.
pub fn get(&self, index: usize) -> Option<&[T]> {
self.storage.get(self.storage_range(index))
}
/// Get a mutable reference to a segment.
///
/// Returns `None` if `index` is out of range.
pub fn get_mut(&mut self, index: usize) -> Option<&mut [T]> {
let range = self.storage_range(index);
self.storage.get_mut(range)
}
/// Remove and return a segment.
///
/// Does not preserve the order of segments.
/// Complexity is the segment length.
///
/// Panics if index is out of range.
pub fn swap_remove(&mut self, index: usize) -> Vec<T> {
debug_assert!(index < self.len());
if index != self.last_index() {
self.storage_range(index)
.zip(self.storage_range_last())
.for_each(|(i, j)| self.storage.swap(i, j))
}
self.storage
.drain(self.storage_range_last())
.as_slice()
.into()
}
/// Swap a segment and truncate its storage.
///
/// Does not preserve the order of segments. The
/// `SlicedVec` length will be reduced by one segment.
/// Complexity is the segment length.
///
/// Panics if `index` is out of bounds.
pub fn swap_truncate(&mut self, index: usize) {
debug_assert!(index < self.len());
if index != self.last_index() {
let src = self.storage_range_last();
let dst = self.storage_begin(index);
self.storage.copy_within(src, dst)
}
self.storage.truncate(self.storage.len() - self.segment_len)
}
/// Non-order-preserving insert.
///
/// Appends the contents of the segment at `index`
/// to the end of the storage and then overwrites
/// the segment with the new values. Complexity is
/// the twice the segment length.
///
/// Panics if `index` is out of bounds.
pub fn swap_insert(&mut self, index: usize, segment: &[T]) {
debug_assert!(index < self.len());
assert_eq!(segment.len(), self.segment_len);
self.storage.extend_from_within(self.storage_range(index));
unsafe { self.overwrite(index, segment) }
}
/// Return a chunked iterator.
///
/// Allows iteration over segments as slices.
pub fn iter(&self) -> impl Iterator<Item = &[T]> {
self.storage.chunks(self.segment_len)
}
/// Return a mutable chunked iterator.
///
/// Allows iteration and modification of segments.
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut [T]> {
self.storage.chunks_mut(self.segment_len)
}
/// Return a chunked iterator.
///
/// Allows iteration over segments as slices.
pub fn enumerate(&self) -> impl Iterator<Item = (usize, &[T])> {
self.storage.chunks(self.segment_len).enumerate()
}
/// Iterate over the raw storage.
pub fn iter_storage(&self) -> Iter<'_, T> {
self.storage.iter()
}
/// Mutable iteration over the raw storage.
pub fn iter_mut_storage(&mut self) -> IterMut<'_, T> {
self.storage.iter_mut()
}
/// Clear the contents.
pub fn clear(&mut self) {
self.storage.clear()
}
/// Test if storage length is zero.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
fn storage_begin(&self, index: usize) -> usize {
debug_assert!(index < self.len());
index * self.segment_len
}
fn storage_end(&self, index: usize) -> usize {
debug_assert!(index < self.len());
self.storage_begin(index) + self.segment_len
}
fn storage_range(&self, index: usize) -> Range<usize> {
debug_assert!(index < self.len());
self.storage_begin(index)..self.storage_end(index)
}
fn storage_range_range(&self, begin: usize, end: usize) -> Range<usize> {
self.storage_begin(begin)..self.storage_end(end)
}
fn storage_range_last(&self) -> Range<usize> {
self.storage_range(self.last_index())
}
fn last_index(&self) -> usize {
self.len() - 1
}
unsafe fn overwrite(&mut self, index: usize, segment: &[T]) {
debug_assert!(index < self.len());
debug_assert_eq!(self.segment_len, segment.len());
ptr::copy(
segment.as_ptr(),
self.storage.as_mut_ptr().add(self.storage_begin(index)),
self.segment_len,
)
}
fn is_valid_length(&self, data: &[T]) -> bool {
(!data.is_empty()) && data.len() % self.segment_len == 0
}
}
impl<T> Index<usize> for SlicedVec<T>
where
T: Copy + Clone,
{
type Output = [T];
fn index(&self, index: usize) -> &Self::Output {
&self.storage[self.storage_range(index)]
}
}
impl<T> IndexMut<usize> for SlicedVec<T>
where
T: Copy + Clone,
{
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
let range = self.storage_range(index);
&mut self.storage[range]
}
}
#[allow(clippy::from_over_into)]
impl<T> Into<Vec<T>> for SlicedVec<T>
where
T: Copy + Clone,
{
fn into(self) -> Vec<T> {
self.storage
}
}
/// Construct a `SlicedVec` from a list of arrays
///
/// # Example
///
/// ```
/// use slicedvec::{slicedvec, SlicedVec};
/// let x = slicedvec![[1, 2, 3], [4, 5, 6]];
/// assert_eq!(x.len(), 2);
/// ```
///
/// Panics if array lengths do not match.
#[macro_export]
macro_rules! slicedvec {
( $first:expr$(, $the_rest:expr )*$(,)? ) => {
{
let mut temp_vec = SlicedVec::new($first.len());
temp_vec.push($first.as_slice());
$(
temp_vec.push($the_rest.as_slice());
)*
temp_vec
}
}
}
/// A segmented slab with stable keys.
///
/// Maintains a `SlicedVec` and a `BTreeSet` of
/// available slots. Given sufficient capacity, no
/// allocation will occur on insert or removal. Look
/// up of available slots is logarithmic in the number
/// of open slots.
#[derive(Debug)]
pub struct SlicedSlab<T>
where
T: Copy + Clone,
{
storage: SlicedVec<T>,
open_slots: BTreeSet<usize>,
}
impl<T> SlicedSlab<T>
where
T: Copy + Clone,
{
/// Construct a new `SlicedSlab`.
///
/// Panics if `segment_len` is zero.
pub fn new(segment_len: usize) -> Self {
assert_ne!(segment_len, 0);
Self {
storage: SlicedVec::new(segment_len),
open_slots: BTreeSet::new(),
}
}
/// Initialize a `SlicedSlab` and set the capacity and segment size.
///
/// Panics if `segment_len` is zero.
pub fn with_capacity(size: usize, segment_len: usize) -> Self {
assert_ne!(segment_len, 0);
Self {
storage: SlicedVec::with_capacity(size, segment_len),
open_slots: BTreeSet::new(),
}
}
#[must_use]
/// Insert a segment into the slab.
///
/// The first available slot is overwritten
/// with the contents of the slice. Otherwise,
/// the slice is appended to the storage. Returns
/// a key for later retrieval.
///
/// Panics if the length of the slice does
/// not match the segments size of the slab.
pub fn insert(&mut self, segment: &[T]) -> usize {
assert_eq!(segment.len(), self.storage.segment_len());
match self.open_slots.pop_first() {
Some(key) => {
debug_assert!(key < self.storage.len());
unsafe {
self.storage.overwrite(key, segment);
}
key
}
None => {
let key = self.storage.len();
self.storage.push(segment);
key
}
}
}
/// Mark the slot as open for future overwrite.
///
/// Keys are not globally unique. They will be reused.
/// Marking the slot unoccupied is logarithmic in the
/// number of open slots.
///
/// Panics of the slot is already marked as open.
pub fn remove(&mut self, key: usize) {
assert!(self.open_slots.insert(key));
}
/// Get a reference to a segment.
///
/// Returns `None` if `key` is out of range
/// or the slot is marked as unoccupied. Key
/// look up is logarithmic in the number of
/// open slots.
pub fn get(&self, key: usize) -> Option<&[T]> {
if self.open_slots.contains(&key) {
return None;
}
self.storage.get(key)
}
/// Get a mutable reference to a segment.
///
/// Returns `None` if `key` is out of range
/// or the slot is marked as unoccupied. Key
/// look up is logarithmic in the number of
/// open slots.
pub fn get_mut(&mut self, key: usize) -> Option<&mut [T]> {
if self.open_slots.contains(&key) {
return None;
}
self.storage.get_mut(key)
}
/// Iterate over key, slice pairs.
///
/// This will be slow if the slab is very sparse.
pub fn enumerate(&self) -> impl Iterator<Item = (usize, &[T])> {
self.storage
.enumerate()
.filter(|(key, _)| !self.open_slots.contains(key))
}
}
#[cfg(test)]
mod tests {
use super::SlicedVec;
#[test]
fn test_slicedvec() {
let mut a = slicedvec!([1, 2, 3], [4, 5, 6], [7, 8, 9]);
assert!(a.is_valid_length(&[1, 2, 3, 4, 5, 6]));
assert_eq!(a.segment_len(), 3);
assert_eq!(&a[0], &[1, 2, 3]);
assert_eq!(&a[1], &[4, 5, 6]);
assert_eq!(&a[2], &[7, 8, 9]);
assert_eq!(a.swap_remove(1), &[4, 5, 6]);
assert_eq!(a.len(), 2);
assert_eq!(&a[1], &[7, 8, 9]);
a.append(&mut slicedvec!(&[3, 6, 9]));
assert_eq!(&a[2], &[3, 6, 9]);
a.insert(1, &[3, 2, 1]);
assert_eq!(&a[3], &[3, 6, 9]);
assert_eq!(&a[1], &[3, 2, 1]);
a.swap_insert(1, &[2, 2, 2]);
assert_eq!(&a[4], &[3, 2, 1]);
assert_eq!(&a[1], &[2, 2, 2]);
let mut v: SlicedVec<i32> = SlicedVec::new(3);
assert_eq!(v.len(), 0);
v.push(&[1, 2, 3]);
assert_eq!(v.len(), 1);
assert_eq!(v.get(0), Some([1, 2, 3].as_slice()));
v.push(&[4, 5, 6]);
assert_eq!(v.len(), 2);
assert_eq!(v.get(0).unwrap(), &[1, 2, 3]);
assert_eq!(v.get(1).unwrap(), &[4, 5, 6]);
let s: i32 = v.iter().map(|x| x.iter().sum::<i32>()).sum();
assert_eq!(s, 21);
let lens = v.iter().map(|x| x.len()).collect::<Vec<_>>();
assert_eq!(lens, vec![3, 3]);
assert_eq!(v.swap_remove(0), &[1, 2, 3]);
assert_eq!(v.get(0).unwrap(), &[4, 5, 6]);
v.iter_mut().for_each(|x| x.clone_from_slice(&[7, 8, 9]));
assert_eq!(v.get(0).unwrap(), &[7, 8, 9]);
let mut w: SlicedVec<i32> = SlicedVec::with_capacity(20, 5);
w.push(&[1, 2, 3, 4, 5]);
let x = w.get_mut(0).unwrap();
assert_eq!(x, &[1, 2, 3, 4, 5]);
x.clone_from_slice(&[5, 4, 3, 2, 1]);
assert_eq!(x, &[5, 4, 3, 2, 1]);
assert_eq!(&w[0], &[5, 4, 3, 2, 1]);
assert_eq!(w[0][2], 3);
let z = w.get_mut(0).unwrap();
z[2] = 0;
assert_eq!(z[2], 0);
assert_eq!(w.get(0).unwrap()[2], 0);
w.push(&[10, 20, 30, 40, 50]);
w.push(&[100, 200, 300, 400, 500]);
w.swap_truncate(0);
assert_eq!(w.len(), 2);
assert_eq!(&w[0], &[100, 200, 300, 400, 500]);
assert_eq!(&w[1], &[10, 20, 30, 40, 50]);
w.swap_truncate(1);
assert_eq!(w.len(), 1);
assert_eq!(&w[0], &[100, 200, 300, 400, 500]);
w.swap_truncate(0);
assert_eq!(w.len(), 0);
assert!(w.is_empty());
let a = slicedvec![[1, 2, 3], [4, 5, 6]];
let aa: Vec<_> = a.into();
assert_eq!(aa.len(), 6);
}
}