1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/* This file is part of sled-overlay
 *
 * Copyright (C) 2023 Dyne.org foundation
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

use std::collections::{BTreeMap, BTreeSet};

use sled::IVec;

/// Struct representing [`SledTreeOverlay`] cache state
#[derive(Clone)]
pub struct SledTreeOverlayState {
    /// The cache is the actual overlayed data represented as a [`BTreeMap`].
    cache: BTreeMap<IVec, IVec>,
    /// In `removed`, we keep track of keys that were removed in the overlay.
    removed: BTreeSet<IVec>,
}

impl SledTreeOverlayState {
    /// Instantiate a new [`SledTreeOverlayState`].
    pub fn new() -> Self {
        Self {
            cache: BTreeMap::new(),
            removed: BTreeSet::new(),
        }
    }
}

impl Default for SledTreeOverlayState {
    fn default() -> Self {
        Self::new()
    }
}

/// An overlay on top of a single [`sled::Tree`] instance
#[derive(Clone)]
pub struct SledTreeOverlay {
    /// The [`sled::Tree`] that is being overlayed.
    tree: sled::Tree,
    /// Current overlay cache state
    state: SledTreeOverlayState,
    /// Checkpointed cache state to revert to
    checkpoint: SledTreeOverlayState,
}

impl SledTreeOverlay {
    /// Instantiate a new [`SledTreeOverlay`] on top of a given [`sled::Tree`].
    pub fn new(tree: &sled::Tree) -> Self {
        Self {
            tree: tree.clone(),
            state: SledTreeOverlayState::new(),
            checkpoint: SledTreeOverlayState::new(),
        }
    }

    /// Returns `true` if the overlay contains a value for a specified key.
    pub fn contains_key(&self, key: &[u8]) -> Result<bool, sled::Error> {
        // First check if the key was removed in the overlay
        if self.state.removed.contains::<IVec>(&key.into()) {
            return Ok(false);
        }

        // Then check the cache and the main tree
        if self.state.cache.contains_key::<IVec>(&key.into()) || self.tree.contains_key(key)? {
            return Ok(true);
        }

        Ok(false)
    }

    /// Returns `true` if the overlay is empty.
    pub fn is_empty(&self) -> bool {
        // Keep a counter of all elements
        let mut counter: i64 = 0;

        // Add existing keys
        counter += self.tree.len() as i64;

        // Add new keys
        counter += self.state.cache.len() as i64;

        // Subtract removed keys
        counter -= self.state.removed.len() as i64;

        counter <= 0
    }

    /// Returns last value from the overlay or `None` if its empty,
    /// based on the `Ord` implementation for `Vec<u8>`.
    pub fn last(&self) -> Result<Option<(IVec, IVec)>, sled::Error> {
        // First check if cache has keys
        if let Some(record) = self.state.cache.last_key_value() {
            return Ok(Some((record.0.clone(), record.1.clone())));
        }

        // Then the main tree
        self.tree.last()
    }

    /// Retrieve a value from the overlay if it exists.
    pub fn get(&self, key: &[u8]) -> Result<Option<IVec>, sled::Error> {
        // First check if the key was removed in the overlay
        if self.state.removed.contains::<IVec>(&key.into()) {
            return Ok(None);
        }

        // Then check the cache
        if let Some(v) = self.state.cache.get::<IVec>(&key.into()) {
            return Ok(Some(v.clone()));
        }

        // And finally the main tree
        self.tree.get(key)
    }

    /// Insert a key to a new value, returning the last value if it was set.
    pub fn insert(&mut self, key: &[u8], value: &[u8]) -> Result<Option<IVec>, sled::Error> {
        // Insert the value into the cache. We then optionally add the previous value
        // into `prev`.
        let mut prev: Option<IVec> = self.state.cache.insert(key.into(), value.into());

        // In case this key was previously removed from the cache, we have to
        // delete it from the `removed` set.
        if self.state.removed.contains::<IVec>(&key.into()) {
            self.state.removed.remove(key);
            // And in that case, a previous value isn't supposed to exist
            return Ok(None);
        }

        // If cache didn't contain this key previously, and it wasn't removed
        // either, then check if it's in the main tree.
        if prev.is_none() {
            prev = self.tree.get::<IVec>(key.into())?;
        }

        Ok(prev)
    }

    /// Delete a value, if it exists, returning the old value.
    pub fn remove(&mut self, key: &[u8]) -> Result<Option<IVec>, sled::Error> {
        // If it was previously removed, we can just return None
        if self.state.removed.contains::<IVec>(&key.into()) {
            return Ok(None);
        }

        // Attempt to remove from cache, and if it wasn't in the cache before,
        // we have to get the previous value from the sled tree:
        let mut prev: Option<IVec> = self.state.cache.remove::<IVec>(&key.into());
        if prev.is_none() {
            prev = self.tree.get(key)?;
        }

        // Previous value must existed
        if prev.is_none() {
            return Err(sled::Error::CollectionNotFound(key.into()));
        }

        // Mark the key as removed
        self.state.removed.insert(key.into());

        Ok(prev)
    }

    /// Aggregate all the current overlay changes into a [`sled::Batch`] ready for
    /// further operation. If there are no changes, return `None`.
    pub fn aggregate(&self) -> Option<sled::Batch> {
        if self.state.cache.is_empty() && self.state.removed.is_empty() {
            return None;
        }

        let mut batch = sled::Batch::default();

        // This kind of first-insert-then-remove operation should be fine
        // provided it's handled correctly in the above functions.
        for (k, v) in self.state.cache.iter() {
            batch.insert(k, v);
        }

        for k in self.state.removed.iter() {
            batch.remove(k);
        }

        Some(batch)
    }

    /// Checkpoint current cache state so we can revert to it, if needed.
    pub fn checkpoint(&mut self) {
        self.checkpoint = self.state.clone();
    }

    /// Revert to current cache state checkpoint.
    pub fn revert_to_checkpoint(&mut self) {
        self.state = self.checkpoint.clone();
    }
}