pub struct DistributedGraphLearning<S = Untrained> { /* private fields */ }Expand description
Distributed Graph Learning for Large-Scale Semi-Supervised Learning
This method distributes graph learning across multiple workers to handle large-scale datasets that cannot fit in memory on a single machine. It uses a master-worker architecture with graph partitioning.
§Parameters
n_workers- Number of workers for distributed computationlambda_sparse- Sparsity regularization parameterbeta_smoothness- Smoothness regularization parametermax_iter- Maximum number of iterationstol- Convergence tolerancepartition_strategy- Strategy for graph partitioning (“random”, “metis”, “spectral”)communication_rounds- Number of communication rounds between workers
§Examples
use scirs2_core::array;
use sklears_semi_supervised::DistributedGraphLearning;
use sklears_core::traits::{Predict, Fit};
let X = array![[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0]];
let y = array![0, 1, -1, -1]; // -1 indicates unlabeled
let dgl = DistributedGraphLearning::new()
.n_workers(2)
.lambda_sparse(0.1)
.partition_strategy("spectral".to_string());
let fitted = dgl.fit(&X.view(), &y.view()).unwrap();
let predictions = fitted.predict(&X.view()).unwrap();Implementations§
Source§impl DistributedGraphLearning<Untrained>
impl DistributedGraphLearning<Untrained>
Sourcepub fn lambda_sparse(self, lambda_sparse: f64) -> Self
pub fn lambda_sparse(self, lambda_sparse: f64) -> Self
Set the sparsity regularization parameter
Sourcepub fn beta_smoothness(self, beta_smoothness: f64) -> Self
pub fn beta_smoothness(self, beta_smoothness: f64) -> Self
Set the smoothness regularization parameter
Sourcepub fn learning_rate(self, learning_rate: f64) -> Self
pub fn learning_rate(self, learning_rate: f64) -> Self
Set the learning rate
Sourcepub fn partition_strategy(self, strategy: String) -> Self
pub fn partition_strategy(self, strategy: String) -> Self
Set the graph partitioning strategy
Sourcepub fn communication_rounds(self, rounds: usize) -> Self
pub fn communication_rounds(self, rounds: usize) -> Self
Set the number of communication rounds
Sourcepub fn overlap_ratio(self, ratio: f64) -> Self
pub fn overlap_ratio(self, ratio: f64) -> Self
Set the overlap ratio between partitions
Sourcepub fn consensus_weight(self, weight: f64) -> Self
pub fn consensus_weight(self, weight: f64) -> Self
Set the consensus weight for combining worker results
Trait Implementations§
Source§impl<S: Clone> Clone for DistributedGraphLearning<S>
impl<S: Clone> Clone for DistributedGraphLearning<S>
Source§fn clone(&self) -> DistributedGraphLearning<S>
fn clone(&self) -> DistributedGraphLearning<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for DistributedGraphLearning<S>
impl<S: Debug> Debug for DistributedGraphLearning<S>
Source§impl Default for DistributedGraphLearning<Untrained>
impl Default for DistributedGraphLearning<Untrained>
Source§impl Estimator for DistributedGraphLearning<Untrained>
impl Estimator for DistributedGraphLearning<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&i32>, Dim<[usize; 1]>>> for DistributedGraphLearning<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&i32>, Dim<[usize; 1]>>> for DistributedGraphLearning<Untrained>
Source§type Fitted = DistributedGraphLearning<DistributedGraphLearningTrained>
type Fitted = DistributedGraphLearning<DistributedGraphLearningTrained>
The fitted model type
Source§fn fit(
self,
X: &ArrayView2<'_, Float>,
y: &ArrayView1<'_, i32>,
) -> SklResult<Self::Fitted>
fn fit( self, X: &ArrayView2<'_, Float>, y: &ArrayView1<'_, i32>, ) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for DistributedGraphLearning<DistributedGraphLearningTrained>
impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for DistributedGraphLearning<DistributedGraphLearningTrained>
Source§fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>>
fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Source§impl PredictProba<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for DistributedGraphLearning<DistributedGraphLearningTrained>
impl PredictProba<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for DistributedGraphLearning<DistributedGraphLearningTrained>
Source§fn predict_proba(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>>
fn predict_proba(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>>
Predict class probabilities
Auto Trait Implementations§
impl<S> Freeze for DistributedGraphLearning<S>where
S: Freeze,
impl<S> RefUnwindSafe for DistributedGraphLearning<S>where
S: RefUnwindSafe,
impl<S> Send for DistributedGraphLearning<S>where
S: Send,
impl<S> Sync for DistributedGraphLearning<S>where
S: Sync,
impl<S> Unpin for DistributedGraphLearning<S>where
S: Unpin,
impl<S> UnwindSafe for DistributedGraphLearning<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features