pub struct MultiTargetDecisionTreeClassifier<S = Untrained> { /* private fields */ }Expand description
Multi-Target Decision Tree Classifier
A decision tree classifier that can handle multiple target variables simultaneously. Uses joint entropy/gini reduction for optimal splits across all targets.
§Examples
use sklears_multioutput::MultiTargetDecisionTreeClassifier;
use sklears_core::traits::{Predict, Fit};
// Use SciRS2-Core for arrays and random number generation (SciRS2 Policy)
use scirs2_core::ndarray::array;
let X = array![[1.0, 2.0], [2.0, 3.0], [3.0, 1.0], [4.0, 4.0]];
let y = array![[0, 1], [1, 0], [1, 1], [0, 0]]; // Two binary classification targets
let tree = MultiTargetDecisionTreeClassifier::new()
.max_depth(Some(3));
let trained_tree = tree.fit(&X.view(), &y).unwrap();
let predictions = trained_tree.predict(&X.view()).unwrap();Implementations§
Source§impl MultiTargetDecisionTreeClassifier<Untrained>
impl MultiTargetDecisionTreeClassifier<Untrained>
Sourcepub fn min_samples_split(self, min_samples_split: usize) -> Self
pub fn min_samples_split(self, min_samples_split: usize) -> Self
Set the minimum number of samples required to split an internal node
Sourcepub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
pub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
Set the minimum number of samples required to be at a leaf node
Sourcepub fn criterion(self, criterion: ClassificationCriterion) -> Self
pub fn criterion(self, criterion: ClassificationCriterion) -> Self
Set the split criterion
Sourcepub fn random_state(self, random_state: Option<u64>) -> Self
pub fn random_state(self, random_state: Option<u64>) -> Self
Set the random state for reproducible results
Source§impl MultiTargetDecisionTreeClassifier<MultiTargetDecisionTreeClassifierTrained>
impl MultiTargetDecisionTreeClassifier<MultiTargetDecisionTreeClassifierTrained>
Sourcepub fn feature_importances(&self) -> &Array1<Float>
pub fn feature_importances(&self) -> &Array1<Float>
Get feature importances
Sourcepub fn predict_proba(
&self,
X: &ArrayView2<'_, Float>,
) -> SklResult<Vec<Array2<Float>>>
pub fn predict_proba( &self, X: &ArrayView2<'_, Float>, ) -> SklResult<Vec<Array2<Float>>>
Predict class probabilities for each target
Trait Implementations§
Source§impl<S: Clone> Clone for MultiTargetDecisionTreeClassifier<S>
impl<S: Clone> Clone for MultiTargetDecisionTreeClassifier<S>
Source§fn clone(&self) -> MultiTargetDecisionTreeClassifier<S>
fn clone(&self) -> MultiTargetDecisionTreeClassifier<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for MultiTargetDecisionTreeClassifier<S>
impl<S: Debug> Debug for MultiTargetDecisionTreeClassifier<S>
Source§impl Estimator for MultiTargetDecisionTreeClassifier<Untrained>
impl Estimator for MultiTargetDecisionTreeClassifier<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 2]>>> for MultiTargetDecisionTreeClassifier<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 2]>>> for MultiTargetDecisionTreeClassifier<Untrained>
Source§type Fitted = MultiTargetDecisionTreeClassifier<MultiTargetDecisionTreeClassifierTrained>
type Fitted = MultiTargetDecisionTreeClassifier<MultiTargetDecisionTreeClassifierTrained>
The fitted model type
Source§fn fit(
self,
X: &ArrayView2<'_, Float>,
y: &Array2<i32>,
) -> SklResult<Self::Fitted>
fn fit( self, X: &ArrayView2<'_, Float>, y: &Array2<i32>, ) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 2]>>> for MultiTargetDecisionTreeClassifier<MultiTargetDecisionTreeClassifierTrained>
impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 2]>>> for MultiTargetDecisionTreeClassifier<MultiTargetDecisionTreeClassifierTrained>
Source§fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<i32>>
fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<i32>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for MultiTargetDecisionTreeClassifier<S>where
S: Freeze,
impl<S> RefUnwindSafe for MultiTargetDecisionTreeClassifier<S>where
S: RefUnwindSafe,
impl<S> Send for MultiTargetDecisionTreeClassifier<S>where
S: Send,
impl<S> Sync for MultiTargetDecisionTreeClassifier<S>where
S: Sync,
impl<S> Unpin for MultiTargetDecisionTreeClassifier<S>where
S: Unpin,
impl<S> UnwindSafe for MultiTargetDecisionTreeClassifier<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features