# sklears-manifold
[](https://crates.io/crates/sklears-manifold)
[](https://docs.rs/sklears-manifold)
[](../../LICENSE)
[](https://www.rust-lang.org)
> **Latest release:** `0.1.0-beta.1` (January 1, 2026). See the [workspace release notes](../../docs/releases/0.1.0-beta.1.md) for highlights and upgrade guidance.
## Overview
`sklears-manifold` implements manifold learning, nonlinear dimensionality reduction, and embedding algorithms mirroring scikit-learn’s manifold module.
## Key Features
- **Algorithms**: t-SNE, UMAP-compatible neighbors, Isomap, Locally Linear Embedding, Spectral Embedding, MDS.
- **Performance**: Barnes-Hut and FFT-based t-SNE, GPU nearest neighbors, and multithreaded eigen solvers.
- **Visualization**: Embedding utilities that integrate with `sklears-inspection` and Python plotting stacks.
- **Pipeline Support**: Works seamlessly with preprocessing, decomposition, and clustering crates.
## Quick Start
```rust
use sklears_manifold::TSNE;
use scirs2_core::ndarray::Array2;
let x: Array2<f32> = // load dataset
Array2::zeros((2000, 128));
let tsne = TSNE::builder()
.n_components(2)
.perplexity(30.0)
.learning_rate(200.0)
.n_iter(1000)
.build();
let embedding = tsne.fit_transform(&x)?;
```
## Status
- Validated by the workspace’s 11,292 passing tests for `0.1.0-beta.1`.
- Performance parity (and in many cases superiority) compared with scikit-learn’s manifold implementations.
- Upcoming tasks (GPU UMAP, streaming embeddings) tracked in `TODO.md`.