# sklears-kernel-approximation
[](https://crates.io/crates/sklears-kernel-approximation)
[](https://docs.rs/sklears-kernel-approximation)
[](../../LICENSE)
[](https://www.rust-lang.org)
> **Latest release:** `0.1.0-beta.1` (January 1, 2026). See the [workspace release notes](../../docs/releases/0.1.0-beta.1.md) for highlights and upgrade guidance.
## Overview
`sklears-kernel-approximation` houses fast kernel feature map transformers, enabling scalable kernel methods for large datasets. The implementations track the scikit-learn 1.5 API while exploiting Rust's parallelism and SIMD acceleration.
## Key Features
- **Random Feature Maps**: RBFSampler, Nystroem, AdditiveChi2Sampler, SkewedChi2Sampler, and more.
- **GPU Acceleration**: Optional CUDA/WebGPU backends for massive random feature expansions.
- **Pipeline Ready**: Builders integrate with `sklears` pipelines, grid search, and calibration stages.
- **Deterministic Testing**: Extensive property-based and integration tests ensure reproducible embeddings.
## Quick Start
```rust
use sklears_kernel_approximation::RBFSampler;
use scirs2_core::ndarray::Array2;
let features: Array2<f64> = // load your data
Array2::zeros((1024, 32));
let transformer = RBFSampler::builder()
.gamma(0.5)
.n_components(4096)
.random_state(Some(42))
.build();
let mapped = transformer.fit_transform(&features)?;
```
## Status
- Verified by the workspace-wide 11,292 passing tests in `0.1.0-beta.1`.
- Benchmarked against scikit-learn to provide 10–30× faster random feature generation.
- Further roadmap tasks (e.g., online updates, streaming sampling) tracked in `TODO.md`.