sklears_impute/
advanced.rs

1//! Advanced imputation methods
2//!
3//! This module provides sophisticated imputation strategies including matrix factorization,
4//! tree-based methods, and other advanced statistical approaches.
5
6use scirs2_core::ndarray::{Array2, ArrayView2};
7
8// Note: Re-exports removed due to missing modules
9// TODO: Implement MatrixFactorizationImputer and DecisionTreeImputer in their own modules
10
11/// Placeholder for advanced imputation implementations
12/// Many advanced methods are implemented in specialized modules:
13/// - Matrix methods in matrix_factorization.rs
14/// - Tree methods in tree_methods.rs
15/// - Kernel methods in kernel.rs
16/// - Neural methods in neural.rs
17/// - Bayesian methods in bayesian.rs
18// Temporary stub implementations for types referenced in lib.rs that don't exist yet
19///
20///   Kernel Density Estimation Imputer
21#[derive(Debug, Clone)]
22pub struct KDEImputer {
23    /// bandwidth
24    pub bandwidth: f64,
25    /// kernel
26    pub kernel: String,
27}
28
29impl Default for KDEImputer {
30    fn default() -> Self {
31        Self {
32            bandwidth: 1.0,
33            kernel: "gaussian".to_string(),
34        }
35    }
36}
37
38impl KDEImputer {
39    pub fn new() -> Self {
40        Self::default()
41    }
42
43    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
44        Err("KDEImputer not fully implemented yet".to_string())
45    }
46}
47
48/// Local Linear Regression Imputer
49#[derive(Debug, Clone)]
50pub struct LocalLinearImputer {
51    /// n_neighbors
52    pub n_neighbors: usize,
53    /// degree
54    pub degree: usize,
55}
56
57impl Default for LocalLinearImputer {
58    fn default() -> Self {
59        Self {
60            n_neighbors: 5,
61            degree: 1,
62        }
63    }
64}
65
66impl LocalLinearImputer {
67    pub fn new() -> Self {
68        Self::default()
69    }
70
71    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
72        Err("LocalLinearImputer not fully implemented yet".to_string())
73    }
74}
75
76/// LOWESS (Locally Weighted Scatterplot Smoothing) Imputer
77#[derive(Debug, Clone)]
78pub struct LowessImputer {
79    /// frac
80    pub frac: f64,
81    /// it
82    pub it: usize,
83}
84
85impl Default for LowessImputer {
86    fn default() -> Self {
87        Self {
88            frac: 0.6667,
89            it: 3,
90        }
91    }
92}
93
94impl LowessImputer {
95    pub fn new() -> Self {
96        Self::default()
97    }
98
99    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
100        Err("LowessImputer not fully implemented yet".to_string())
101    }
102}
103
104/// Robust Regression Imputer
105#[derive(Debug, Clone)]
106pub struct RobustRegressionImputer {
107    /// method
108    pub method: String,
109    /// max_iter
110    pub max_iter: usize,
111}
112
113impl Default for RobustRegressionImputer {
114    fn default() -> Self {
115        Self {
116            method: "huber".to_string(),
117            max_iter: 100,
118        }
119    }
120}
121
122impl RobustRegressionImputer {
123    pub fn new() -> Self {
124        Self::default()
125    }
126
127    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
128        Err("RobustRegressionImputer not fully implemented yet".to_string())
129    }
130}
131
132/// Trimmed Mean Imputer
133#[derive(Debug, Clone)]
134pub struct TrimmedMeanImputer {
135    /// trim_fraction
136    pub trim_fraction: f64,
137}
138
139impl Default for TrimmedMeanImputer {
140    fn default() -> Self {
141        Self { trim_fraction: 0.1 }
142    }
143}
144
145impl TrimmedMeanImputer {
146    pub fn new() -> Self {
147        Self::default()
148    }
149
150    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
151        Err("TrimmedMeanImputer not fully implemented yet".to_string())
152    }
153}
154
155/// Multivariate Normal Imputer
156#[derive(Debug, Clone)]
157pub struct MultivariateNormalImputer {
158    /// max_iter
159    pub max_iter: usize,
160    /// tol
161    pub tol: f64,
162}
163
164impl Default for MultivariateNormalImputer {
165    fn default() -> Self {
166        Self {
167            max_iter: 1000,
168            tol: 1e-6,
169        }
170    }
171}
172
173impl MultivariateNormalImputer {
174    pub fn new() -> Self {
175        Self::default()
176    }
177
178    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
179        Err("MultivariateNormalImputer not fully implemented yet".to_string())
180    }
181}
182
183/// Copula-based Imputer
184#[derive(Debug, Clone)]
185pub struct CopulaImputer {
186    /// copula_type
187    pub copula_type: String,
188    /// n_samples
189    pub n_samples: usize,
190}
191
192impl Default for CopulaImputer {
193    fn default() -> Self {
194        Self {
195            copula_type: "gaussian".to_string(),
196            n_samples: 1000,
197        }
198    }
199}
200
201impl CopulaImputer {
202    pub fn new() -> Self {
203        Self::default()
204    }
205
206    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
207        Err("CopulaImputer not fully implemented yet".to_string())
208    }
209}
210
211/// Copula Parameters
212#[derive(Debug, Clone, Default)]
213pub struct CopulaParameters {
214    /// correlation_matrix
215    pub correlation_matrix: Option<Array2<f64>>,
216    /// marginal_distributions
217    pub marginal_distributions: Vec<String>,
218}
219
220/// Factor Analysis Imputer
221#[derive(Debug, Clone)]
222pub struct FactorAnalysisImputer {
223    /// n_components
224    pub n_components: usize,
225    /// max_iter
226    pub max_iter: usize,
227}
228
229impl Default for FactorAnalysisImputer {
230    fn default() -> Self {
231        Self {
232            n_components: 2,
233            max_iter: 1000,
234        }
235    }
236}
237
238impl FactorAnalysisImputer {
239    pub fn new() -> Self {
240        Self::default()
241    }
242
243    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
244        Err("FactorAnalysisImputer not fully implemented yet".to_string())
245    }
246}
247
248/// Empirical CDF
249#[derive(Debug, Clone)]
250pub struct EmpiricalCDF {
251    /// values
252    pub values: Vec<f64>,
253}
254
255impl EmpiricalCDF {
256    pub fn new(values: Vec<f64>) -> Self {
257        Self { values }
258    }
259
260    pub fn evaluate(&self, _x: f64) -> f64 {
261        0.5 // Placeholder
262    }
263}
264
265/// Empirical Quantile function
266#[derive(Debug, Clone)]
267pub struct EmpiricalQuantile {
268    /// values
269    pub values: Vec<f64>,
270}
271
272impl EmpiricalQuantile {
273    pub fn new(values: Vec<f64>) -> Self {
274        Self { values }
275    }
276
277    pub fn evaluate(&self, _p: f64) -> f64 {
278        self.values.first().cloned().unwrap_or(0.0) // Placeholder
279    }
280}
281
282/// Breakdown point analysis
283#[derive(Debug, Clone)]
284pub struct BreakdownPointAnalysis {
285    /// breakdown_point
286    pub breakdown_point: f64,
287    /// robust_estimates
288    pub robust_estimates: Vec<f64>,
289}
290
291/// Analyze breakdown point of robust estimators
292pub fn analyze_breakdown_point(_X: &ArrayView2<f64>) -> BreakdownPointAnalysis {
293    BreakdownPointAnalysis {
294        breakdown_point: 0.5,
295        robust_estimates: Vec::new(),
296    }
297}