# sklears-gaussian-process
[](https://crates.io/crates/sklears-gaussian-process)
[](https://docs.rs/sklears-gaussian-process)
[](../../LICENSE)
[](https://www.rust-lang.org)
> **Latest release:** `0.1.0-beta.1` (January 1, 2026). See the [workspace release notes](../../docs/releases/0.1.0-beta.1.md) for highlights and upgrade guidance.
## Overview
`sklears-gaussian-process` offers Gaussian Process regression and classification tooling with scikit-learn compatible APIs, expanded kernel catalogs, and high-performance Rust implementations.
## Key Features
- **Estimators**: GaussianProcessRegressor, GaussianProcessClassifier, multi-output variants, and sparse approximations.
- **Kernel Library**: RBF, Matern, RationalQuadratic, DotProduct, ExpSineSquared, White, Constant, and custom combinators.
- **Performance**: Hierarchical matrix factorizations, GPU-accelerated covariance operations, and stochastic approximations for big data.
- **Uncertainty Quantification**: Predictive variance, confidence intervals, and Bayesian optimization primitives.
## Quick Start
```rust
use sklears_gaussian_process::{GaussianProcessRegressor, kernels::RBF};
use scirs2_core::ndarray::{array, Array1};
let x = array![
[0.0],
[0.4],
[0.8],
[1.2],
];
let y = Array1::from(vec![0.0, 0.2, -0.1, 0.3]);
let gpr = GaussianProcessRegressor::builder()
.kernel(RBF::new(1.0))
.alpha(1e-6)
.normalize_y(true)
.random_state(Some(123))
.build();
let fitted = gpr.fit(&x, &y)?;
let (mean, std) = fitted.predict(&x, true)?;
```
## Status
- Validated by workspace integration tests; `0.1.0-beta.1` ships with all 11,160 tests passing.
- Benchmarks show 5–20× faster kernel computations versus CPython implementations.
- Future milestones (variational inference, GPU sparse GPs) tracked in this crate’s `TODO.md`.