sklears_ensemble/stacking/
blending.rs

1//! Blending classifier implementation
2//!
3//! This module provides a blending ensemble classifier that uses a holdout validation
4//! approach instead of cross-validation to generate meta-features for training a meta-learner.
5
6use scirs2_core::ndarray::{Array1, Array2};
7use sklears_core::{
8    error::{Result, SklearsError},
9    prelude::Predict,
10    traits::{Fit, Trained, Untrained},
11    types::Float,
12};
13use std::marker::PhantomData;
14
15/// Blending Classifier
16///
17/// Uses a holdout validation approach to train base estimators on part of the data
18/// and generate meta-features on the remaining data for training a meta-learner.
19#[derive(Debug)]
20pub struct BlendingClassifier<State = Untrained> {
21    pub(crate) holdout_ratio: f64,
22    pub(crate) random_state: Option<u64>,
23    pub(crate) state: PhantomData<State>,
24    // Fitted attributes
25    pub(crate) n_base_estimators_: Option<usize>,
26    pub(crate) classes_: Option<Array1<i32>>,
27    pub(crate) n_features_in_: Option<usize>,
28}
29
30impl BlendingClassifier<Untrained> {
31    /// Create a new blending classifier
32    pub fn new(n_base_estimators: usize) -> Self {
33        Self {
34            holdout_ratio: 0.2, // 20% holdout by default
35            random_state: None,
36            state: PhantomData,
37            n_base_estimators_: Some(n_base_estimators),
38            classes_: None,
39            n_features_in_: None,
40        }
41    }
42
43    /// Set the holdout ratio for validation set
44    pub fn holdout_ratio(mut self, ratio: f64) -> Self {
45        if ratio <= 0.0 || ratio >= 1.0 {
46            panic!("Holdout ratio must be between 0 and 1");
47        }
48        self.holdout_ratio = ratio;
49        self
50    }
51
52    /// Set the random state for reproducibility
53    pub fn random_state(mut self, random_state: u64) -> Self {
54        self.random_state = Some(random_state);
55        self
56    }
57}
58
59impl Fit<Array2<Float>, Array1<i32>> for BlendingClassifier<Untrained> {
60    type Fitted = BlendingClassifier<Trained>;
61
62    fn fit(self, x: &Array2<Float>, y: &Array1<i32>) -> Result<Self::Fitted> {
63        if x.nrows() != y.len() {
64            return Err(SklearsError::ShapeMismatch {
65                expected: format!("{} samples", x.nrows()),
66                actual: format!("{} samples", y.len()),
67            });
68        }
69
70        let n_features = x.ncols();
71
72        // Get unique classes
73        let mut classes: Vec<i32> = y.to_vec();
74        classes.sort_unstable();
75        classes.dedup();
76        let classes_array = Array1::from_vec(classes);
77
78        // Placeholder implementation - in practice would split data and train estimators
79
80        Ok(BlendingClassifier {
81            holdout_ratio: self.holdout_ratio,
82            random_state: self.random_state,
83            state: PhantomData,
84            n_base_estimators_: self.n_base_estimators_,
85            classes_: Some(classes_array),
86            n_features_in_: Some(n_features),
87        })
88    }
89}
90
91impl Predict<Array2<Float>, Array1<i32>> for BlendingClassifier<Trained> {
92    fn predict(&self, x: &Array2<Float>) -> Result<Array1<i32>> {
93        if x.ncols() != self.n_features_in_.unwrap() {
94            return Err(SklearsError::FeatureMismatch {
95                expected: self.n_features_in_.unwrap(),
96                actual: x.ncols(),
97            });
98        }
99
100        // Placeholder implementation
101        let n_samples = x.nrows();
102        let classes = self.classes_.as_ref().unwrap();
103
104        // Simple prediction: assign first class to all samples
105        let predictions = Array1::from_elem(n_samples, classes[0]);
106
107        Ok(predictions)
108    }
109}
110
111impl BlendingClassifier<Trained> {
112    /// Get the classes
113    pub fn classes(&self) -> &Array1<i32> {
114        self.classes_.as_ref().unwrap()
115    }
116
117    /// Get the number of features in the training data
118    pub fn n_features_in(&self) -> usize {
119        self.n_features_in_.unwrap()
120    }
121
122    /// Get the number of base estimators
123    pub fn n_base_estimators(&self) -> usize {
124        self.n_base_estimators_.unwrap()
125    }
126
127    /// Get the holdout ratio used for validation
128    pub fn holdout_ratio(&self) -> f64 {
129        self.holdout_ratio
130    }
131
132    /// Get the random state used for reproducibility
133    pub fn random_state(&self) -> Option<u64> {
134        self.random_state
135    }
136}
137
138#[allow(non_snake_case)]
139#[cfg(test)]
140mod tests {
141    use super::*;
142    use scirs2_core::ndarray::array;
143
144    #[test]
145    fn test_blending_creation() {
146        let blending = BlendingClassifier::new(2)
147            .holdout_ratio(0.3)
148            .random_state(42);
149
150        assert_eq!(blending.holdout_ratio, 0.3);
151        assert_eq!(blending.random_state, Some(42));
152        assert_eq!(blending.n_base_estimators_.unwrap(), 2);
153    }
154
155    #[test]
156    fn test_blending_fit_predict() {
157        let x = array![
158            [1.0, 2.0],
159            [3.0, 4.0],
160            [5.0, 6.0],
161            [7.0, 8.0],
162            [9.0, 10.0],
163            [11.0, 12.0],
164            [13.0, 14.0],
165            [15.0, 16.0],
166            [17.0, 18.0],
167            [19.0, 20.0],
168            [21.0, 22.0],
169            [23.0, 24.0]
170        ];
171        let y = array![0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1];
172
173        let blending = BlendingClassifier::new(2);
174        let fitted_model = blending.fit(&x, &y).unwrap();
175
176        assert_eq!(fitted_model.n_features_in(), 2);
177        assert_eq!(fitted_model.classes().len(), 2);
178
179        let predictions = fitted_model.predict(&x).unwrap();
180        assert_eq!(predictions.len(), 12);
181    }
182
183    #[test]
184    #[should_panic(expected = "Holdout ratio must be between 0 and 1")]
185    fn test_invalid_holdout_ratio() {
186        let _blending = BlendingClassifier::new(2).holdout_ratio(1.5);
187    }
188
189    #[test]
190    fn test_shape_mismatch() {
191        let x = array![[1.0, 2.0], [3.0, 4.0]];
192        let y = array![0]; // Wrong length
193
194        let blending = BlendingClassifier::new(1);
195        let result = blending.fit(&x, &y);
196
197        assert!(result.is_err());
198        assert!(result.unwrap_err().to_string().contains("Shape mismatch"));
199    }
200
201    #[test]
202    fn test_feature_mismatch() {
203        let x_train = array![
204            [1.0, 2.0],
205            [3.0, 4.0],
206            [5.0, 6.0],
207            [7.0, 8.0],
208            [9.0, 10.0],
209            [11.0, 12.0]
210        ];
211        let y_train = array![0, 1, 0, 1, 0, 1];
212        let x_test = array![[1.0, 2.0, 3.0]]; // Wrong number of features
213
214        let blending = BlendingClassifier::new(1);
215        let fitted_model = blending.fit(&x_train, &y_train).unwrap();
216        let result = fitted_model.predict(&x_test);
217
218        assert!(result.is_err());
219        assert!(result.unwrap_err().to_string().contains("Feature"));
220    }
221}