sklears_ensemble/
parallel.rs

1//! Data-parallel ensemble training framework
2//!
3//! This module provides a comprehensive framework for parallel ensemble training,
4//! supporting various parallelization strategies including data-parallel, model-parallel,
5//! and distributed training approaches.
6
7use sklears_core::error::{Result, SklearsError};
8use std::thread;
9use std::time::Instant;
10
11#[cfg(feature = "parallel")]
12use rayon::prelude::*;
13#[cfg(feature = "parallel")]
14use rayon::ThreadPoolBuilder;
15
16/// Parallel training strategy enumeration
17#[derive(Debug, Clone, Copy, PartialEq)]
18pub enum ParallelStrategy {
19    /// Data-parallel training - split data across workers
20    DataParallel,
21    /// Model-parallel training - split models across workers
22    ModelParallel,
23    /// Ensemble-parallel training - train different base learners in parallel
24    EnsembleParallel,
25    /// Hybrid approach combining multiple strategies
26    Hybrid,
27}
28
29/// Configuration for parallel training
30#[derive(Debug, Clone)]
31pub struct ParallelConfig {
32    /// Number of parallel workers (threads)
33    pub n_workers: Option<usize>,
34    /// Parallelization strategy
35    pub strategy: ParallelStrategy,
36    /// Batch size for data-parallel training
37    pub batch_size: Option<usize>,
38    /// Whether to use work-stealing scheduler
39    pub work_stealing: bool,
40    /// Thread pool configuration
41    pub thread_pool_size: Option<usize>,
42    /// Memory limit per worker (in MB)
43    pub memory_limit_mb: Option<usize>,
44    /// Enable load balancing across workers
45    pub load_balancing: bool,
46    /// Communication buffer size for distributed training
47    pub communication_buffer_size: usize,
48    /// Timeout for worker operations (in seconds)
49    pub worker_timeout_secs: Option<u64>,
50}
51
52impl Default for ParallelConfig {
53    fn default() -> Self {
54        Self {
55            n_workers: None, // Use all available cores
56            strategy: ParallelStrategy::DataParallel,
57            batch_size: None, // Determine automatically
58            work_stealing: true,
59            thread_pool_size: None,
60            memory_limit_mb: None,
61            load_balancing: true,
62            communication_buffer_size: 1024,
63            worker_timeout_secs: None,
64        }
65    }
66}
67
68/// Parallel ensemble trainer
69pub struct ParallelEnsembleTrainer {
70    config: ParallelConfig,
71    performance_metrics: ParallelPerformanceMetrics,
72}
73
74/// Performance metrics for parallel training
75#[derive(Debug, Clone)]
76pub struct ParallelPerformanceMetrics {
77    /// Total training time
78    pub total_time_secs: f64,
79    /// Time spent in parallel computation
80    pub parallel_time_secs: f64,
81    /// Time spent in synchronization
82    pub sync_time_secs: f64,
83    /// Number of workers used
84    pub workers_used: usize,
85    /// Parallel efficiency (0.0 to 1.0)
86    pub parallel_efficiency: f64,
87    /// Memory usage per worker (MB)
88    pub memory_usage_mb: Vec<f64>,
89    /// Load balancing efficiency
90    pub load_balance_efficiency: f64,
91}
92
93impl Default for ParallelPerformanceMetrics {
94    fn default() -> Self {
95        Self {
96            total_time_secs: 0.0,
97            parallel_time_secs: 0.0,
98            sync_time_secs: 0.0,
99            workers_used: 0,
100            parallel_efficiency: 0.0,
101            memory_usage_mb: Vec::new(),
102            load_balance_efficiency: 0.0,
103        }
104    }
105}
106
107/// Trait for parallel trainable estimators
108pub trait ParallelTrainable<X, Y> {
109    type Output;
110
111    /// Train a single estimator on a data subset
112    fn train_single(&self, x: &X, y: &Y, worker_id: usize) -> Result<Self::Output>;
113
114    /// Combine results from multiple workers
115    fn combine_results(results: Vec<Self::Output>) -> Result<Self::Output>;
116
117    /// Estimate memory usage for given data size
118    fn estimate_memory_usage(&self, data_size: usize) -> usize;
119}
120
121/// Data partition for parallel training
122#[derive(Debug, Clone)]
123pub struct DataPartition {
124    /// Start index in the original dataset
125    pub start_idx: usize,
126    /// End index in the original dataset
127    pub end_idx: usize,
128    /// Worker ID assigned to this partition
129    pub worker_id: usize,
130    /// Estimated memory usage for this partition
131    pub memory_estimate_mb: f64,
132}
133
134impl ParallelEnsembleTrainer {
135    /// Create a new parallel ensemble trainer
136    pub fn new(config: ParallelConfig) -> Self {
137        Self {
138            config,
139            performance_metrics: ParallelPerformanceMetrics::default(),
140        }
141    }
142
143    /// Create trainer with automatic configuration
144    pub fn auto() -> Self {
145        let n_workers = thread::available_parallelism()
146            .map(|n| n.get())
147            .unwrap_or(4);
148
149        Self::new(ParallelConfig {
150            n_workers: Some(n_workers),
151            ..Default::default()
152        })
153    }
154
155    /// Train ensemble using data-parallel strategy
156    pub fn train_data_parallel<T, X, Y>(
157        &mut self,
158        trainer: &T,
159        x: &X,
160        y: &Y,
161        n_estimators: usize,
162    ) -> Result<Vec<T::Output>>
163    where
164        T: ParallelTrainable<X, Y> + Sync + Send,
165        X: Clone + Send + Sync,
166        Y: Clone + Send + Sync,
167        T::Output: Send,
168    {
169        let start_time = Instant::now();
170
171        // Determine number of workers
172        let n_workers = self.config.n_workers.unwrap_or_else(|| {
173            thread::available_parallelism()
174                .map(|n| n.get())
175                .unwrap_or(4)
176        });
177
178        self.performance_metrics.workers_used = n_workers;
179
180        // Create data partitions
181        let partitions = self.create_data_partitions(n_estimators, n_workers)?;
182
183        let parallel_start = Instant::now();
184
185        #[cfg(feature = "parallel")]
186        {
187            // Configure thread pool if specified
188            let pool = if let Some(pool_size) = self.config.thread_pool_size {
189                ThreadPoolBuilder::new()
190                    .num_threads(pool_size)
191                    .build()
192                    .map_err(|e| {
193                        SklearsError::InvalidInput(format!("Failed to create thread pool: {}", e))
194                    })?
195            } else {
196                rayon::ThreadPoolBuilder::new()
197                    .num_threads(n_workers)
198                    .build()
199                    .map_err(|e| {
200                        SklearsError::InvalidInput(format!("Failed to create thread pool: {}", e))
201                    })?
202            };
203
204            // Train in parallel
205            let results: Result<Vec<_>> = pool.install(|| {
206                partitions
207                    .into_par_iter()
208                    .map(|partition| trainer.train_single(x, y, partition.worker_id))
209                    .collect()
210            });
211
212            let parallel_results = results?;
213
214            self.performance_metrics.parallel_time_secs = parallel_start.elapsed().as_secs_f64();
215
216            // Synchronization phase
217            let sync_start = Instant::now();
218
219            // Here you would normally combine results if needed
220            // For ensemble methods, we typically just collect the individual models
221
222            self.performance_metrics.sync_time_secs = sync_start.elapsed().as_secs_f64();
223            self.performance_metrics.total_time_secs = start_time.elapsed().as_secs_f64();
224
225            // Calculate efficiency metrics
226            self.calculate_efficiency_metrics();
227
228            Ok(parallel_results)
229        }
230
231        #[cfg(not(feature = "parallel"))]
232        {
233            // Fall back to sequential training
234            let mut results = Vec::new();
235            for partition in partitions {
236                let result = trainer.train_single(x, y, partition.worker_id)?;
237                results.push(result);
238            }
239
240            self.performance_metrics.parallel_time_secs = parallel_start.elapsed().as_secs_f64();
241            self.performance_metrics.total_time_secs = start_time.elapsed().as_secs_f64();
242
243            Ok(results)
244        }
245    }
246
247    /// Train ensemble using model-parallel strategy
248    pub fn train_model_parallel<T, X, Y>(
249        &mut self,
250        trainers: Vec<&T>,
251        x: &X,
252        y: &Y,
253    ) -> Result<Vec<T::Output>>
254    where
255        T: ParallelTrainable<X, Y> + Sync + Send,
256        X: Clone + Send + Sync,
257        Y: Clone + Send + Sync,
258        T::Output: Send,
259    {
260        let start_time = Instant::now();
261
262        #[cfg(feature = "parallel")]
263        {
264            let results: Result<Vec<_>> = trainers
265                .into_par_iter()
266                .enumerate()
267                .map(|(worker_id, trainer)| trainer.train_single(x, y, worker_id))
268                .collect();
269
270            self.performance_metrics.total_time_secs = start_time.elapsed().as_secs_f64();
271            results
272        }
273
274        #[cfg(not(feature = "parallel"))]
275        {
276            let mut results = Vec::new();
277            for (worker_id, trainer) in trainers.into_iter().enumerate() {
278                let result = trainer.train_single(x, y, worker_id)?;
279                results.push(result);
280            }
281
282            self.performance_metrics.total_time_secs = start_time.elapsed().as_secs_f64();
283            Ok(results)
284        }
285    }
286
287    /// Create data partitions for parallel training
288    fn create_data_partitions(
289        &self,
290        n_estimators: usize,
291        n_workers: usize,
292    ) -> Result<Vec<DataPartition>> {
293        if n_estimators == 0 {
294            return Err(SklearsError::InvalidInput(
295                "Number of estimators must be greater than 0".to_string(),
296            ));
297        }
298
299        let mut partitions = Vec::new();
300        let estimators_per_worker = n_estimators / n_workers;
301        let remainder = n_estimators % n_workers;
302
303        let mut start_idx = 0;
304
305        for worker_id in 0..n_workers {
306            let current_size = estimators_per_worker + if worker_id < remainder { 1 } else { 0 };
307
308            if current_size > 0 {
309                let end_idx = start_idx + current_size;
310
311                partitions.push(DataPartition {
312                    start_idx,
313                    end_idx,
314                    worker_id,
315                    memory_estimate_mb: self.estimate_partition_memory(current_size),
316                });
317
318                start_idx = end_idx;
319            }
320        }
321
322        Ok(partitions)
323    }
324
325    /// Estimate memory usage for a partition
326    fn estimate_partition_memory(&self, partition_size: usize) -> f64 {
327        // Basic estimation - can be refined based on actual model characteristics
328        let base_memory_mb = 10.0; // Base memory per estimator
329        let size_factor = partition_size as f64 * base_memory_mb;
330
331        if let Some(limit) = self.config.memory_limit_mb {
332            size_factor.min(limit as f64)
333        } else {
334            size_factor
335        }
336    }
337
338    /// Calculate efficiency metrics
339    fn calculate_efficiency_metrics(&mut self) {
340        let ideal_time =
341            self.performance_metrics.total_time_secs / self.performance_metrics.workers_used as f64;
342        let actual_time = self.performance_metrics.parallel_time_secs;
343
344        self.performance_metrics.parallel_efficiency = if actual_time > 0.0 {
345            ideal_time / actual_time
346        } else {
347            0.0
348        };
349
350        // Load balancing efficiency (simplified calculation)
351        self.performance_metrics.load_balance_efficiency =
352            self.performance_metrics.parallel_efficiency * 0.9; // Assume some load imbalance
353    }
354
355    /// Get performance metrics
356    pub fn performance_metrics(&self) -> &ParallelPerformanceMetrics {
357        &self.performance_metrics
358    }
359
360    /// Reset performance metrics
361    pub fn reset_metrics(&mut self) {
362        self.performance_metrics = ParallelPerformanceMetrics::default();
363    }
364
365    /// Configure parallel training for specific hardware
366    pub fn configure_for_hardware(&mut self, n_cores: usize, memory_gb: usize) {
367        self.config.n_workers = Some(n_cores);
368        self.config.thread_pool_size = Some(n_cores);
369        self.config.memory_limit_mb = Some((memory_gb * 1024) / n_cores);
370
371        // Adjust batch size based on available memory
372        let estimated_batch_size = (memory_gb * 1024) / (n_cores * 100); // Rough estimate
373        self.config.batch_size = Some(estimated_batch_size);
374    }
375
376    /// Enable advanced parallel features
377    pub fn enable_advanced_features(&mut self) {
378        self.config.work_stealing = true;
379        self.config.load_balancing = true;
380        self.config.strategy = ParallelStrategy::Hybrid;
381    }
382}
383
384/// Asynchronous training coordinator for distributed ensembles
385pub struct AsyncEnsembleCoordinator {
386    config: ParallelConfig,
387    active_workers: Vec<usize>,
388    completed_tasks: Vec<usize>,
389}
390
391impl AsyncEnsembleCoordinator {
392    /// Create new async coordinator
393    pub fn new(config: ParallelConfig) -> Self {
394        Self {
395            config,
396            active_workers: Vec::new(),
397            completed_tasks: Vec::new(),
398        }
399    }
400
401    /// Submit training task asynchronously
402    pub fn submit_task(&mut self, worker_id: usize, task_id: usize) {
403        self.active_workers.push(worker_id);
404        // In a real implementation, this would submit to a job queue
405    }
406
407    /// Wait for all tasks to complete
408    pub fn wait_for_completion(&mut self) -> Result<Vec<usize>> {
409        // In a real implementation, this would wait for async tasks
410        Ok(self.completed_tasks.clone())
411    }
412
413    /// Get status of active workers
414    pub fn get_worker_status(&self) -> Vec<usize> {
415        self.active_workers.clone()
416    }
417}
418
419/// Federated ensemble learning coordinator
420pub struct FederatedEnsembleCoordinator {
421    nodes: Vec<String>,
422    aggregation_strategy: String,
423    communication_protocol: String,
424}
425
426impl FederatedEnsembleCoordinator {
427    /// Create new federated coordinator
428    pub fn new(nodes: Vec<String>) -> Self {
429        Self {
430            nodes,
431            aggregation_strategy: "average".to_string(),
432            communication_protocol: "http".to_string(),
433        }
434    }
435
436    /// Coordinate federated training
437    pub fn coordinate_training(&self) -> Result<()> {
438        // Placeholder for federated training coordination
439        // In a real implementation, this would:
440        // 1. Distribute data/models to nodes
441        // 2. Coordinate training rounds
442        // 3. Aggregate results
443        // 4. Handle node failures
444        Ok(())
445    }
446
447    /// Set aggregation strategy
448    pub fn set_aggregation_strategy(&mut self, strategy: &str) {
449        self.aggregation_strategy = strategy.to_string();
450    }
451}
452
453#[allow(non_snake_case)]
454#[cfg(test)]
455mod tests {
456    use super::*;
457    use scirs2_core::ndarray::{Array1, Array2};
458
459    // Mock trainer for testing
460    struct MockTrainer;
461
462    impl ParallelTrainable<Array2<f64>, Array1<i32>> for MockTrainer {
463        type Output = Vec<f64>;
464
465        fn train_single(
466            &self,
467            _x: &Array2<f64>,
468            _y: &Array1<i32>,
469            worker_id: usize,
470        ) -> Result<Self::Output> {
471            // Mock training - just return worker_id as a vec
472            Ok(vec![worker_id as f64])
473        }
474
475        fn combine_results(results: Vec<Self::Output>) -> Result<Self::Output> {
476            Ok(results.into_iter().flatten().collect())
477        }
478
479        fn estimate_memory_usage(&self, _data_size: usize) -> usize {
480            1024 // 1 KB
481        }
482    }
483
484    #[test]
485    fn test_parallel_trainer_creation() {
486        let trainer = ParallelEnsembleTrainer::auto();
487        assert!(trainer.config.n_workers.is_some());
488        assert_eq!(trainer.config.strategy, ParallelStrategy::DataParallel);
489    }
490
491    #[test]
492    fn test_data_partitions() {
493        let config = ParallelConfig::default();
494        let trainer = ParallelEnsembleTrainer::new(config);
495
496        let partitions = trainer.create_data_partitions(10, 4).unwrap();
497        assert_eq!(partitions.len(), 4);
498
499        // Check that all estimators are covered
500        let total_estimators: usize = partitions.iter().map(|p| p.end_idx - p.start_idx).sum();
501        assert_eq!(total_estimators, 10);
502    }
503
504    #[test]
505    fn test_mock_parallel_training() {
506        let mut trainer = ParallelEnsembleTrainer::auto();
507        let mock_trainer = MockTrainer;
508
509        let x = Array2::zeros((100, 5));
510        let y = Array1::zeros(100);
511
512        let results = trainer
513            .train_data_parallel(&mock_trainer, &x, &y, 4)
514            .unwrap();
515        assert_eq!(results.len(), 4); // Should have 4 results for 4 estimators
516    }
517
518    #[test]
519    fn test_hardware_configuration() {
520        let mut trainer = ParallelEnsembleTrainer::auto();
521        trainer.configure_for_hardware(8, 16);
522
523        assert_eq!(trainer.config.n_workers, Some(8));
524        assert_eq!(trainer.config.thread_pool_size, Some(8));
525        assert!(trainer.config.memory_limit_mb.is_some());
526    }
527
528    #[test]
529    fn test_async_coordinator() {
530        let config = ParallelConfig::default();
531        let mut coordinator = AsyncEnsembleCoordinator::new(config);
532
533        coordinator.submit_task(0, 1);
534        coordinator.submit_task(1, 2);
535
536        assert_eq!(coordinator.get_worker_status().len(), 2);
537    }
538
539    #[test]
540    fn test_federated_coordinator() {
541        let nodes = vec!["node1".to_string(), "node2".to_string()];
542        let mut coordinator = FederatedEnsembleCoordinator::new(nodes);
543
544        coordinator.set_aggregation_strategy("weighted_average");
545        assert_eq!(coordinator.aggregation_strategy, "weighted_average");
546    }
547}