# sklears-dummy
[](https://crates.io/crates/sklears-dummy)
[](https://docs.rs/sklears-dummy)
[](../../LICENSE)
[](https://www.rust-lang.org)
> **Latest release:** `0.1.0-beta.1` (January 1, 2026). See the [workspace release notes](../../docs/releases/0.1.0-beta.1.md) for highlights and upgrade guidance.
## Overview
`sklears-dummy` implements baseline estimators for regression and classification, mirroring scikit-learn’s dummy module. These models provide sanity checks, benchmarking baselines, and quick data diagnostics.
## Key Features
- **Strategies**: Mean, median, constant, stratified, most frequent, uniform, and custom priors.
- **Compatibility**: Works with classification, regression, multi-output, and probabilistic evaluation.
- **Pipelines**: Seamless integration with sklears pipelines, metrics, and inspection tooling.
- **Diagnostics**: Utilities for baseline comparisons and sanity checks during experimentation.
## Quick Start
```rust
use sklears_dummy::DummyClassifier;
use scirs2_core::ndarray::{array, Array1};
let x = array![
[0.0, 1.0],
[1.0, 0.0],
[1.0, 1.0],
];
let y = Array1::from(vec![0, 1, 1]);
let dummy = DummyClassifier::builder()
.strategy("most_frequent")
.random_state(Some(42))
.build();
let fitted = dummy.fit(&x, &y)?;
let predictions = fitted.predict(&x)?;
```
## Status
- Included in the 11,292 passing workspace tests for `0.1.0-beta.1`.
- Perfect for establishing baselines before deploying advanced models.
- Future enhancements (time-series baselines, streaming priors) logged in `TODO.md`.