sklears_compose/
parallel_execution.rs

1//! Parallel pipeline execution components
2//!
3//! This module provides parallel pipeline components, async execution,
4//! thread-safe composition, and work-stealing schedulers.
5
6use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, ArrayView2};
7use scirs2_core::random::thread_rng;
8use sklears_core::{
9    error::Result as SklResult,
10    prelude::{Predict, SklearsError, Transform},
11    traits::{Estimator, Fit, Untrained},
12    types::Float,
13};
14use std::collections::{HashMap, VecDeque};
15use std::future::Future;
16use std::pin::Pin;
17use std::sync::{Arc, Condvar, Mutex, RwLock};
18use std::task::{Context, Poll};
19use std::thread::{self, JoinHandle, ThreadId};
20use std::time::{Duration, Instant, SystemTime};
21
22use crate::{PipelinePredictor, PipelineStep};
23
24/// Parallel execution configuration
25#[derive(Debug, Clone)]
26pub struct ParallelConfig {
27    /// Number of worker threads
28    pub num_workers: usize,
29    /// Thread pool type
30    pub pool_type: ThreadPoolType,
31    /// Work stealing enabled
32    pub work_stealing: bool,
33    /// Load balancing strategy
34    pub load_balancing: LoadBalancingStrategy,
35    /// Task scheduling strategy
36    pub scheduling: SchedulingStrategy,
37    /// Maximum queue size per worker
38    pub max_queue_size: usize,
39    /// Worker idle timeout
40    pub idle_timeout: Duration,
41}
42
43impl Default for ParallelConfig {
44    fn default() -> Self {
45        Self {
46            num_workers: num_cpus::get(),
47            pool_type: ThreadPoolType::FixedSize,
48            work_stealing: true,
49            load_balancing: LoadBalancingStrategy::RoundRobin,
50            scheduling: SchedulingStrategy::FIFO,
51            max_queue_size: 1000,
52            idle_timeout: Duration::from_secs(60),
53        }
54    }
55}
56
57/// Thread pool types
58#[derive(Debug, Clone)]
59pub enum ThreadPoolType {
60    /// Fixed number of threads
61    FixedSize,
62    /// Dynamic thread pool that adapts to load
63    Dynamic {
64        min_threads: usize,
65        max_threads: usize,
66    },
67    /// Single-threaded execution
68    SingleThreaded,
69}
70
71/// Load balancing strategies
72#[derive(Debug, Clone)]
73pub enum LoadBalancingStrategy {
74    /// Round-robin task distribution
75    RoundRobin,
76    /// Least loaded worker
77    LeastLoaded,
78    /// Random distribution
79    Random,
80    /// Locality-aware distribution
81    LocalityAware,
82}
83
84/// Task scheduling strategies
85#[derive(Debug, Clone)]
86pub enum SchedulingStrategy {
87    /// First-In-First-Out
88    FIFO,
89    /// Last-In-First-Out
90    LIFO,
91    /// Priority-based scheduling
92    Priority,
93    /// Work-stealing deque
94    WorkStealing,
95}
96
97/// Parallel task wrapper
98pub struct ParallelTask {
99    /// Task identifier
100    pub id: String,
101    /// Task function
102    pub task_fn: Box<dyn FnOnce() -> SklResult<TaskResult> + Send>,
103    /// Task priority
104    pub priority: u32,
105    /// Estimated execution time
106    pub estimated_duration: Duration,
107    /// Task dependencies
108    pub dependencies: Vec<String>,
109    /// Task metadata
110    pub metadata: HashMap<String, String>,
111}
112
113impl std::fmt::Debug for ParallelTask {
114    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
115        f.debug_struct("ParallelTask")
116            .field("id", &self.id)
117            .field("task_fn", &"<function>")
118            .field("priority", &self.priority)
119            .field("estimated_duration", &self.estimated_duration)
120            .field("dependencies", &self.dependencies)
121            .field("metadata", &self.metadata)
122            .finish()
123    }
124}
125
126/// Task execution result
127#[derive(Debug, Clone)]
128pub struct TaskResult {
129    /// Task identifier
130    pub task_id: String,
131    /// Result data
132    pub data: Vec<u8>,
133    /// Execution duration
134    pub duration: Duration,
135    /// Worker thread ID
136    pub worker_id: ThreadId,
137    /// Success flag
138    pub success: bool,
139    /// Error message (if any)
140    pub error: Option<String>,
141}
142
143/// Worker thread state
144#[derive(Debug)]
145pub struct WorkerState {
146    /// Worker ID
147    pub worker_id: usize,
148    /// Thread handle
149    pub thread_handle: Option<JoinHandle<()>>,
150    /// Task queue
151    pub task_queue: Arc<Mutex<VecDeque<ParallelTask>>>,
152    /// Worker status
153    pub status: WorkerStatus,
154    /// Statistics
155    pub stats: WorkerStatistics,
156    /// Work stealing deque
157    pub steal_deque: Arc<Mutex<VecDeque<ParallelTask>>>,
158}
159
160/// Worker status
161#[derive(Debug, Clone, PartialEq)]
162pub enum WorkerStatus {
163    /// Idle
164    Idle,
165    /// Working
166    Working,
167    /// Stealing
168    Stealing,
169    /// Terminated
170    Terminated,
171}
172
173/// Worker statistics
174#[derive(Debug, Clone)]
175pub struct WorkerStatistics {
176    /// Tasks completed
177    pub tasks_completed: u64,
178    /// Tasks failed
179    pub tasks_failed: u64,
180    /// Total execution time
181    pub total_execution_time: Duration,
182    /// Average task duration
183    pub avg_task_duration: Duration,
184    /// Last activity timestamp
185    pub last_activity: SystemTime,
186    /// Work stolen from others
187    pub work_stolen: u64,
188    /// Work given to others
189    pub work_given: u64,
190}
191
192impl Default for WorkerStatistics {
193    fn default() -> Self {
194        Self {
195            tasks_completed: 0,
196            tasks_failed: 0,
197            total_execution_time: Duration::ZERO,
198            avg_task_duration: Duration::ZERO,
199            last_activity: SystemTime::now(),
200            work_stolen: 0,
201            work_given: 0,
202        }
203    }
204}
205
206/// Parallel executor for pipeline tasks
207#[derive(Debug)]
208pub struct ParallelExecutor {
209    /// Configuration
210    config: ParallelConfig,
211    /// Worker threads
212    workers: Vec<WorkerState>,
213    /// Task dispatcher
214    dispatcher: TaskDispatcher,
215    /// Global task queue
216    global_queue: Arc<Mutex<VecDeque<ParallelTask>>>,
217    /// Completed tasks
218    completed_tasks: Arc<Mutex<HashMap<String, TaskResult>>>,
219    /// Executor statistics
220    statistics: Arc<RwLock<ExecutorStatistics>>,
221    /// Running flag
222    is_running: Arc<Mutex<bool>>,
223    /// Shutdown signal
224    shutdown_signal: Arc<Condvar>,
225}
226
227/// Task dispatcher for load balancing
228#[derive(Debug)]
229pub struct TaskDispatcher {
230    /// Round-robin index
231    round_robin_index: Mutex<usize>,
232    /// Load balancing strategy
233    strategy: LoadBalancingStrategy,
234    /// Worker load tracking
235    worker_loads: Arc<RwLock<Vec<usize>>>,
236}
237
238/// Executor statistics
239#[derive(Debug, Clone)]
240pub struct ExecutorStatistics {
241    /// Total tasks submitted
242    pub tasks_submitted: u64,
243    /// Total tasks completed
244    pub tasks_completed: u64,
245    /// Total tasks failed
246    pub tasks_failed: u64,
247    /// Average task duration
248    pub avg_task_duration: Duration,
249    /// Throughput (tasks per second)
250    pub throughput: f64,
251    /// Worker utilization
252    pub worker_utilization: f64,
253    /// Queue depth
254    pub queue_depth: usize,
255    /// Last update timestamp
256    pub last_updated: SystemTime,
257}
258
259impl Default for ExecutorStatistics {
260    fn default() -> Self {
261        Self {
262            tasks_submitted: 0,
263            tasks_completed: 0,
264            tasks_failed: 0,
265            avg_task_duration: Duration::ZERO,
266            throughput: 0.0,
267            worker_utilization: 0.0,
268            queue_depth: 0,
269            last_updated: SystemTime::now(),
270        }
271    }
272}
273
274impl TaskDispatcher {
275    /// Create a new task dispatcher
276    #[must_use]
277    pub fn new(strategy: LoadBalancingStrategy, num_workers: usize) -> Self {
278        Self {
279            round_robin_index: Mutex::new(0),
280            strategy,
281            worker_loads: Arc::new(RwLock::new(vec![0; num_workers])),
282        }
283    }
284
285    /// Dispatch task to appropriate worker
286    pub fn dispatch_task(&self, task: ParallelTask, workers: &mut [WorkerState]) -> SklResult<()> {
287        let worker_index = match self.strategy {
288            LoadBalancingStrategy::RoundRobin => {
289                let mut index = self.round_robin_index.lock().unwrap();
290                let selected = *index;
291                *index = (*index + 1) % workers.len();
292                selected
293            }
294            LoadBalancingStrategy::LeastLoaded => self.find_least_loaded_worker(workers),
295            LoadBalancingStrategy::Random => {
296                let mut rng = thread_rng();
297                rng.gen_range(0..workers.len())
298            }
299            LoadBalancingStrategy::LocalityAware => {
300                // Simplified locality-aware selection
301                self.find_best_locality_worker(workers, &task)
302            }
303        };
304
305        // Add task to selected worker's queue
306        let mut queue = workers[worker_index].task_queue.lock().unwrap();
307        queue.push_back(task);
308
309        // Update worker load
310        let mut loads = self.worker_loads.write().unwrap();
311        loads[worker_index] += 1;
312
313        Ok(())
314    }
315
316    /// Find least loaded worker
317    fn find_least_loaded_worker(&self, workers: &[WorkerState]) -> usize {
318        let loads = self.worker_loads.read().unwrap();
319        loads
320            .iter()
321            .enumerate()
322            .min_by_key(|(_, &load)| load)
323            .map_or(0, |(index, _)| index)
324    }
325
326    /// Find best worker based on locality
327    fn find_best_locality_worker(&self, workers: &[WorkerState], _task: &ParallelTask) -> usize {
328        // Simplified implementation - prefer first available worker
329        workers
330            .iter()
331            .position(|worker| worker.status == WorkerStatus::Idle)
332            .unwrap_or(0)
333    }
334
335    /// Update worker load
336    pub fn update_worker_load(&self, worker_index: usize, delta: i32) {
337        let mut loads = self.worker_loads.write().unwrap();
338        if delta < 0 {
339            loads[worker_index] = loads[worker_index].saturating_sub((-delta) as usize);
340        } else {
341            loads[worker_index] += delta as usize;
342        }
343    }
344}
345
346impl ParallelExecutor {
347    /// Create a new parallel executor
348    #[must_use]
349    pub fn new(config: ParallelConfig) -> Self {
350        let num_workers = config.num_workers;
351        let dispatcher = TaskDispatcher::new(config.load_balancing.clone(), num_workers);
352
353        Self {
354            config,
355            workers: Vec::with_capacity(num_workers),
356            dispatcher,
357            global_queue: Arc::new(Mutex::new(VecDeque::new())),
358            completed_tasks: Arc::new(Mutex::new(HashMap::new())),
359            statistics: Arc::new(RwLock::new(ExecutorStatistics::default())),
360            is_running: Arc::new(Mutex::new(false)),
361            shutdown_signal: Arc::new(Condvar::new()),
362        }
363    }
364
365    /// Start the parallel executor
366    pub fn start(&mut self) -> SklResult<()> {
367        {
368            let mut running = self.is_running.lock().unwrap();
369            if *running {
370                return Ok(());
371            }
372            *running = true;
373        }
374
375        // Initialize workers
376        for worker_id in 0..self.config.num_workers {
377            let worker = self.create_worker(worker_id)?;
378            self.workers.push(worker);
379        }
380
381        // Start worker threads
382        for i in 0..self.workers.len() {
383            self.start_worker_by_index(i)?;
384        }
385
386        Ok(())
387    }
388
389    /// Stop the parallel executor
390    pub fn stop(&mut self) -> SklResult<()> {
391        {
392            let mut running = self.is_running.lock().unwrap();
393            *running = false;
394        }
395
396        // Signal shutdown to all workers
397        self.shutdown_signal.notify_all();
398
399        // Wait for all workers to finish
400        for worker in &mut self.workers {
401            if let Some(handle) = worker.thread_handle.take() {
402                handle.join().map_err(|_| SklearsError::InvalidData {
403                    reason: "Failed to join worker thread".to_string(),
404                })?;
405            }
406        }
407
408        Ok(())
409    }
410
411    /// Create a new worker
412    fn create_worker(&self, worker_id: usize) -> SklResult<WorkerState> {
413        Ok(WorkerState {
414            worker_id,
415            thread_handle: None,
416            task_queue: Arc::new(Mutex::new(VecDeque::new())),
417            status: WorkerStatus::Idle,
418            stats: WorkerStatistics::default(),
419            steal_deque: Arc::new(Mutex::new(VecDeque::new())),
420        })
421    }
422
423    /// Start a worker thread by index
424    fn start_worker_by_index(&mut self, worker_index: usize) -> SklResult<()> {
425        // First collect all the data we need without holding mutable references
426        let worker_id = self.workers[worker_index].worker_id;
427        let task_queue = Arc::clone(&self.workers[worker_index].task_queue);
428        let steal_deque = Arc::clone(&self.workers[worker_index].steal_deque);
429        let completed_tasks = Arc::clone(&self.completed_tasks);
430        let is_running = Arc::clone(&self.is_running);
431        let shutdown_signal = Arc::clone(&self.shutdown_signal);
432        let statistics = Arc::clone(&self.statistics);
433        let config = self.config.clone();
434
435        // Create worker threads for other workers (for work stealing)
436        let other_workers: Vec<Arc<Mutex<VecDeque<ParallelTask>>>> = self
437            .workers
438            .iter()
439            .enumerate()
440            .filter(|(i, _)| *i != worker_id)
441            .map(|(_, w)| Arc::clone(&w.task_queue))
442            .collect();
443
444        let handle = thread::spawn(move || {
445            Self::worker_loop(
446                worker_id,
447                task_queue,
448                steal_deque,
449                other_workers,
450                completed_tasks,
451                is_running,
452                shutdown_signal,
453                statistics,
454                config,
455            );
456        });
457
458        // Now get the mutable reference to the worker to set the handle
459        let worker = &mut self.workers[worker_index];
460        worker.thread_handle = Some(handle);
461        Ok(())
462    }
463
464    /// Worker thread main loop
465    fn worker_loop(
466        worker_id: usize,
467        task_queue: Arc<Mutex<VecDeque<ParallelTask>>>,
468        steal_deque: Arc<Mutex<VecDeque<ParallelTask>>>,
469        other_workers: Vec<Arc<Mutex<VecDeque<ParallelTask>>>>,
470        completed_tasks: Arc<Mutex<HashMap<String, TaskResult>>>,
471        is_running: Arc<Mutex<bool>>,
472        shutdown_signal: Arc<Condvar>,
473        statistics: Arc<RwLock<ExecutorStatistics>>,
474        config: ParallelConfig,
475    ) {
476        let mut local_stats = WorkerStatistics::default();
477
478        while *is_running.lock().unwrap() {
479            // Try to get task from local queue
480            let task = {
481                let mut queue = task_queue.lock().unwrap();
482                queue.pop_front()
483            };
484
485            let task = if let Some(task) = task {
486                Some(task)
487            } else if config.work_stealing {
488                // Try to steal work from other workers
489                Self::steal_work(&other_workers, worker_id, &mut local_stats)
490            } else {
491                // Wait for work
492                let queue = task_queue.lock().unwrap();
493                let _guard = shutdown_signal
494                    .wait_timeout(queue, config.idle_timeout)
495                    .unwrap();
496                continue;
497            };
498
499            if let Some(task) = task {
500                let start_time = Instant::now();
501                let task_id = task.id.clone();
502
503                // Execute task
504                let result = match (task.task_fn)() {
505                    Ok(mut result) => {
506                        result.task_id = task_id.clone();
507                        result.worker_id = thread::current().id();
508                        result.duration = start_time.elapsed();
509                        result.success = true;
510                        local_stats.tasks_completed += 1;
511                        result
512                    }
513                    Err(e) => {
514                        local_stats.tasks_failed += 1;
515                        /// TaskResult
516                        TaskResult {
517                            task_id: task_id.clone(),
518                            data: Vec::new(),
519                            duration: start_time.elapsed(),
520                            worker_id: thread::current().id(),
521                            success: false,
522                            error: Some(format!("{e:?}")),
523                        }
524                    }
525                };
526
527                // Update statistics
528                let execution_time = start_time.elapsed();
529                local_stats.total_execution_time += execution_time;
530                local_stats.avg_task_duration = local_stats.total_execution_time
531                    / (local_stats.tasks_completed + local_stats.tasks_failed) as u32;
532                local_stats.last_activity = SystemTime::now();
533
534                // Store completed task
535                {
536                    let mut completed = completed_tasks.lock().unwrap();
537                    completed.insert(task_id, result);
538                }
539
540                // Update global statistics
541                {
542                    let mut stats = statistics.write().unwrap();
543                    stats.tasks_completed += 1;
544                    stats.last_updated = SystemTime::now();
545                }
546            }
547        }
548    }
549
550    /// Steal work from other workers
551    fn steal_work(
552        other_workers: &[Arc<Mutex<VecDeque<ParallelTask>>>],
553        _worker_id: usize,
554        stats: &mut WorkerStatistics,
555    ) -> Option<ParallelTask> {
556        for other_queue in other_workers {
557            if let Ok(mut queue) = other_queue.try_lock() {
558                if let Some(task) = queue.pop_back() {
559                    stats.work_stolen += 1;
560                    return Some(task);
561                }
562            }
563        }
564        None
565    }
566
567    /// Submit a task for parallel execution
568    pub fn submit_task(&mut self, task: ParallelTask) -> SklResult<()> {
569        {
570            let mut stats = self.statistics.write().unwrap();
571            stats.tasks_submitted += 1;
572        }
573
574        self.dispatcher.dispatch_task(task, &mut self.workers)?;
575        Ok(())
576    }
577
578    /// Get task result
579    pub fn get_task_result(&self, task_id: &str) -> Option<TaskResult> {
580        let completed = self.completed_tasks.lock().unwrap();
581        completed.get(task_id).cloned()
582    }
583
584    /// Get executor statistics
585    pub fn statistics(&self) -> ExecutorStatistics {
586        let stats = self.statistics.read().unwrap();
587        stats.clone()
588    }
589
590    /// Wait for all tasks to complete
591    pub fn wait_for_completion(&self, timeout: Option<Duration>) -> SklResult<()> {
592        let start_time = Instant::now();
593
594        loop {
595            let stats = self.statistics();
596            if stats.tasks_submitted == stats.tasks_completed + stats.tasks_failed {
597                break;
598            }
599
600            if let Some(timeout) = timeout {
601                if start_time.elapsed() > timeout {
602                    return Err(SklearsError::InvalidData {
603                        reason: "Timeout waiting for task completion".to_string(),
604                    });
605                }
606            }
607
608            thread::sleep(Duration::from_millis(10));
609        }
610
611        Ok(())
612    }
613}
614
615/// Parallel pipeline for executing multiple pipeline steps concurrently
616#[derive(Debug)]
617pub struct ParallelPipeline<S = Untrained> {
618    state: S,
619    steps: Vec<(String, Box<dyn PipelineStep>)>,
620    final_estimator: Option<Box<dyn PipelinePredictor>>,
621    executor: Option<ParallelExecutor>,
622    parallel_config: ParallelConfig,
623    execution_strategy: ParallelExecutionStrategy,
624}
625
626/// Parallel execution strategies
627#[derive(Debug, Clone)]
628pub enum ParallelExecutionStrategy {
629    /// Execute all steps in parallel (where dependencies allow)
630    FullParallel,
631    /// Execute steps in parallel batches
632    BatchParallel { batch_size: usize },
633    /// Pipeline parallelism (different data through different steps)
634    PipelineParallel,
635    /// Data parallelism (same step on different data chunks)
636    DataParallel { chunk_size: usize },
637}
638
639/// Trained state for parallel pipeline
640#[derive(Debug)]
641pub struct ParallelPipelineTrained {
642    fitted_steps: Vec<(String, Box<dyn PipelineStep>)>,
643    fitted_estimator: Option<Box<dyn PipelinePredictor>>,
644    parallel_config: ParallelConfig,
645    execution_strategy: ParallelExecutionStrategy,
646    n_features_in: usize,
647    feature_names_in: Option<Vec<String>>,
648}
649
650impl ParallelPipeline<Untrained> {
651    /// Create a new parallel pipeline
652    #[must_use]
653    pub fn new(parallel_config: ParallelConfig) -> Self {
654        Self {
655            state: Untrained,
656            steps: Vec::new(),
657            final_estimator: None,
658            executor: None,
659            parallel_config,
660            execution_strategy: ParallelExecutionStrategy::FullParallel,
661        }
662    }
663
664    /// Add a pipeline step
665    pub fn add_step(&mut self, name: String, step: Box<dyn PipelineStep>) {
666        self.steps.push((name, step));
667    }
668
669    /// Set the final estimator
670    pub fn set_estimator(&mut self, estimator: Box<dyn PipelinePredictor>) {
671        self.final_estimator = Some(estimator);
672    }
673
674    /// Set execution strategy
675    pub fn execution_strategy(mut self, strategy: ParallelExecutionStrategy) -> Self {
676        self.execution_strategy = strategy;
677        self
678    }
679}
680
681impl Estimator for ParallelPipeline<Untrained> {
682    type Config = ();
683    type Error = SklearsError;
684    type Float = Float;
685
686    fn config(&self) -> &Self::Config {
687        &()
688    }
689}
690
691impl Fit<ArrayView2<'_, Float>, Option<&ArrayView1<'_, Float>>> for ParallelPipeline<Untrained> {
692    type Fitted = ParallelPipeline<ParallelPipelineTrained>;
693
694    fn fit(
695        mut self,
696        x: &ArrayView2<'_, Float>,
697        y: &Option<&ArrayView1<'_, Float>>,
698    ) -> SklResult<Self::Fitted> {
699        // Initialize parallel executor
700        let mut executor = ParallelExecutor::new(self.parallel_config.clone());
701        executor.start()?;
702
703        // Execute steps based on strategy
704        let fitted_steps = match self.execution_strategy {
705            ParallelExecutionStrategy::FullParallel => {
706                self.fit_steps_parallel(x, y, &mut executor)?
707            }
708            ParallelExecutionStrategy::BatchParallel { batch_size } => {
709                self.fit_steps_batch_parallel(x, y, &mut executor, batch_size)?
710            }
711            ParallelExecutionStrategy::PipelineParallel => {
712                self.fit_steps_pipeline_parallel(x, y, &mut executor)?
713            }
714            ParallelExecutionStrategy::DataParallel { chunk_size } => {
715                self.fit_steps_data_parallel(x, y, &mut executor, chunk_size)?
716            }
717        };
718
719        // Fit final estimator if present
720        let fitted_estimator = if let Some(mut estimator) = self.final_estimator {
721            // Apply all transformations sequentially to get final features
722            let mut current_x = x.to_owned();
723            for (_, step) in &fitted_steps {
724                current_x = step.transform(&current_x.view())?;
725            }
726
727            if let Some(y_values) = y.as_ref() {
728                let mapped_x = current_x.view().mapv(|v| v as Float);
729                estimator.fit(&mapped_x.view(), y_values)?;
730                Some(estimator)
731            } else {
732                None
733            }
734        } else {
735            None
736        };
737
738        // Stop executor
739        executor.stop()?;
740
741        Ok(ParallelPipeline {
742            state: ParallelPipelineTrained {
743                fitted_steps,
744                fitted_estimator,
745                parallel_config: self.parallel_config,
746                execution_strategy: self.execution_strategy,
747                n_features_in: x.ncols(),
748                feature_names_in: None,
749            },
750            steps: Vec::new(),
751            final_estimator: None,
752            executor: None,
753            parallel_config: ParallelConfig::default(),
754            execution_strategy: ParallelExecutionStrategy::FullParallel,
755        })
756    }
757}
758
759impl ParallelPipeline<Untrained> {
760    /// Fit steps in full parallel mode
761    fn fit_steps_parallel(
762        &mut self,
763        x: &ArrayView2<'_, Float>,
764        y: &Option<&ArrayView1<'_, Float>>,
765        executor: &mut ParallelExecutor,
766    ) -> SklResult<Vec<(String, Box<dyn PipelineStep>)>> {
767        let mut fitted_steps = Vec::new();
768
769        // For simplification, fit steps sequentially
770        // In a real implementation, this would analyze dependencies and parallelize appropriately
771        let mut current_x = x.to_owned();
772        for (name, mut step) in self.steps.drain(..) {
773            step.fit(&current_x.view(), y.as_ref().copied())?;
774            current_x = step.transform(&current_x.view())?;
775            fitted_steps.push((name, step));
776        }
777
778        Ok(fitted_steps)
779    }
780
781    /// Fit steps in batch parallel mode
782    fn fit_steps_batch_parallel(
783        &mut self,
784        x: &ArrayView2<'_, Float>,
785        y: &Option<&ArrayView1<'_, Float>>,
786        executor: &mut ParallelExecutor,
787        batch_size: usize,
788    ) -> SklResult<Vec<(String, Box<dyn PipelineStep>)>> {
789        let mut fitted_steps = Vec::new();
790        let mut steps = self.steps.drain(..).collect::<Vec<_>>();
791
792        while !steps.is_empty() {
793            let batch_size = batch_size.min(steps.len());
794            let batch: Vec<_> = steps.drain(0..batch_size).collect();
795            let mut batch_fitted = Vec::new();
796
797            for (name, mut step) in batch {
798                step.fit(x, y.as_ref().copied())?;
799                batch_fitted.push((name, step));
800            }
801
802            fitted_steps.extend(batch_fitted);
803        }
804
805        Ok(fitted_steps)
806    }
807
808    /// Fit steps in pipeline parallel mode
809    fn fit_steps_pipeline_parallel(
810        &mut self,
811        x: &ArrayView2<'_, Float>,
812        y: &Option<&ArrayView1<'_, Float>>,
813        executor: &mut ParallelExecutor,
814    ) -> SklResult<Vec<(String, Box<dyn PipelineStep>)>> {
815        // Simplified implementation - same as sequential for now
816        self.fit_steps_parallel(x, y, executor)
817    }
818
819    /// Fit steps in data parallel mode
820    fn fit_steps_data_parallel(
821        &mut self,
822        x: &ArrayView2<'_, Float>,
823        y: &Option<&ArrayView1<'_, Float>>,
824        executor: &mut ParallelExecutor,
825        chunk_size: usize,
826    ) -> SklResult<Vec<(String, Box<dyn PipelineStep>)>> {
827        let mut fitted_steps = Vec::new();
828
829        // Process data in chunks for each step
830        let mut current_x = x.to_owned();
831        for (name, mut step) in self.steps.drain(..) {
832            // For simplification, fit on full data
833            // In a real implementation, this would chunk the data and fit in parallel
834            step.fit(&current_x.view(), y.as_ref().copied())?;
835            current_x = step.transform(&current_x.view())?;
836            fitted_steps.push((name, step));
837        }
838
839        Ok(fitted_steps)
840    }
841}
842
843impl ParallelPipeline<ParallelPipelineTrained> {
844    /// Transform data using parallel execution
845    pub fn transform(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>> {
846        if let ParallelExecutionStrategy::DataParallel { chunk_size } =
847            self.state.execution_strategy
848        {
849            self.transform_data_parallel(x, chunk_size)
850        } else {
851            // Sequential transformation for other strategies
852            let mut current_x = x.to_owned();
853            for (_, step) in &self.state.fitted_steps {
854                current_x = step.transform(&current_x.view())?;
855            }
856            Ok(current_x)
857        }
858    }
859
860    /// Transform data using data parallelism
861    fn transform_data_parallel(
862        &self,
863        x: &ArrayView2<'_, Float>,
864        chunk_size: usize,
865    ) -> SklResult<Array2<f64>> {
866        let n_rows = x.nrows();
867        let n_chunks = (n_rows + chunk_size - 1) / chunk_size;
868        let mut results = Vec::with_capacity(n_chunks);
869
870        // Process chunks in parallel (simplified sequential implementation)
871        for chunk_start in (0..n_rows).step_by(chunk_size) {
872            let chunk_end = std::cmp::min(chunk_start + chunk_size, n_rows);
873            let chunk = x.slice(s![chunk_start..chunk_end, ..]);
874
875            let mut current_chunk = chunk.to_owned();
876            for (_, step) in &self.state.fitted_steps {
877                current_chunk = step.transform(&current_chunk.view())?;
878            }
879
880            results.push(current_chunk);
881        }
882
883        // Concatenate results
884        if results.is_empty() {
885            return Ok(Array2::zeros((0, 0)));
886        }
887
888        let total_rows: usize = results
889            .iter()
890            .map(scirs2_core::ndarray::ArrayBase::nrows)
891            .sum();
892        let n_cols = results[0].ncols();
893        let mut combined = Array2::zeros((total_rows, n_cols));
894
895        let mut row_offset = 0;
896        for result in results {
897            let end_offset = row_offset + result.nrows();
898            combined
899                .slice_mut(s![row_offset..end_offset, ..])
900                .assign(&result);
901            row_offset = end_offset;
902        }
903
904        Ok(combined)
905    }
906
907    /// Predict using parallel execution
908    pub fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>> {
909        let transformed = self.transform(x)?;
910
911        if let Some(estimator) = &self.state.fitted_estimator {
912            let mapped_data = transformed.view().mapv(|v| v as Float);
913            estimator.predict(&mapped_data.view())
914        } else {
915            Err(SklearsError::NotFitted {
916                operation: "predict".to_string(),
917            })
918        }
919    }
920}
921
922/// Async task wrapper for future-based execution
923pub struct AsyncTask {
924    future: Pin<Box<dyn Future<Output = SklResult<TaskResult>> + Send>>,
925}
926
927impl AsyncTask {
928    /// Create a new async task
929    pub fn new<F>(future: F) -> Self
930    where
931        F: Future<Output = SklResult<TaskResult>> + Send + 'static,
932    {
933        Self {
934            future: Box::pin(future),
935        }
936    }
937}
938
939impl Future for AsyncTask {
940    type Output = SklResult<TaskResult>;
941
942    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
943        self.future.as_mut().poll(cx)
944    }
945}
946
947#[allow(non_snake_case)]
948#[cfg(test)]
949mod tests {
950    use super::*;
951    use crate::MockTransformer;
952
953    #[test]
954    fn test_parallel_config() {
955        let config = ParallelConfig::default();
956        assert!(config.num_workers > 0);
957        assert!(matches!(config.pool_type, ThreadPoolType::FixedSize));
958        assert!(config.work_stealing);
959    }
960
961    #[test]
962    fn test_task_dispatcher() {
963        let dispatcher = TaskDispatcher::new(LoadBalancingStrategy::RoundRobin, 4);
964
965        // Test round-robin selection
966        let mut workers = vec![
967            /// WorkerState
968            WorkerState {
969                worker_id: 0,
970                thread_handle: None,
971                task_queue: Arc::new(Mutex::new(VecDeque::new())),
972                status: WorkerStatus::Idle,
973                stats: WorkerStatistics::default(),
974                steal_deque: Arc::new(Mutex::new(VecDeque::new())),
975            },
976            /// WorkerState
977            WorkerState {
978                worker_id: 1,
979                thread_handle: None,
980                task_queue: Arc::new(Mutex::new(VecDeque::new())),
981                status: WorkerStatus::Idle,
982                stats: WorkerStatistics::default(),
983                steal_deque: Arc::new(Mutex::new(VecDeque::new())),
984            },
985        ];
986
987        let task = ParallelTask {
988            id: "test_task".to_string(),
989            task_fn: Box::new(|| {
990                Ok(TaskResult {
991                    task_id: "test_task".to_string(),
992                    data: vec![1, 2, 3],
993                    duration: Duration::from_millis(10),
994                    worker_id: thread::current().id(),
995                    success: true,
996                    error: None,
997                })
998            }),
999            priority: 1,
1000            estimated_duration: Duration::from_millis(100),
1001            dependencies: Vec::new(),
1002            metadata: HashMap::new(),
1003        };
1004
1005        assert!(dispatcher.dispatch_task(task, &mut workers).is_ok());
1006    }
1007
1008    #[test]
1009    fn test_worker_statistics() {
1010        let mut stats = WorkerStatistics::default();
1011        assert_eq!(stats.tasks_completed, 0);
1012        assert_eq!(stats.tasks_failed, 0);
1013        assert_eq!(stats.work_stolen, 0);
1014    }
1015
1016    #[test]
1017    fn test_parallel_pipeline_creation() {
1018        let config = ParallelConfig::default();
1019        let mut pipeline = ParallelPipeline::new(config);
1020
1021        pipeline.add_step("step1".to_string(), Box::new(MockTransformer::new()));
1022        pipeline.set_estimator(Box::new(crate::MockPredictor::new()));
1023
1024        assert_eq!(pipeline.steps.len(), 1);
1025        assert!(pipeline.final_estimator.is_some());
1026    }
1027
1028    #[test]
1029    fn test_execution_strategies() {
1030        let strategies = vec![
1031            ParallelExecutionStrategy::FullParallel,
1032            ParallelExecutionStrategy::BatchParallel { batch_size: 2 },
1033            ParallelExecutionStrategy::PipelineParallel,
1034            ParallelExecutionStrategy::DataParallel { chunk_size: 100 },
1035        ];
1036
1037        for strategy in strategies {
1038            let config = ParallelConfig::default();
1039            let pipeline = ParallelPipeline::new(config).execution_strategy(strategy);
1040            // Test that pipeline can be created with different strategies
1041            assert!(pipeline.steps.is_empty());
1042        }
1043    }
1044
1045    #[test]
1046    fn test_task_result() {
1047        let result = TaskResult {
1048            task_id: "test".to_string(),
1049            data: vec![1, 2, 3, 4],
1050            duration: Duration::from_millis(50),
1051            worker_id: thread::current().id(),
1052            success: true,
1053            error: None,
1054        };
1055
1056        assert_eq!(result.task_id, "test");
1057        assert_eq!(result.data.len(), 4);
1058        assert!(result.success);
1059        assert!(result.error.is_none());
1060    }
1061}