sklears_compose/
quantum.rs

1//! Quantum Computing Pipeline Components
2//!
3//! This module provides experimental quantum computing integration for machine learning pipelines.
4//! It includes quantum-inspired algorithms and interfaces for quantum computing backends.
5
6use scirs2_core::ndarray::{Array1, Array2};
7use sklears_core::error::Result;
8use sklears_core::traits::Transform;
9use std::collections::{HashMap, VecDeque};
10use std::fmt::Debug;
11use std::time::{Duration, Instant};
12
13/// Quantum-inspired machine learning transformer
14///
15/// This transformer uses quantum computing concepts for data transformation
16/// Currently provides a classical simulation of quantum algorithms
17#[derive(Debug, Clone)]
18pub struct QuantumTransformer {
19    /// Number of qubits to simulate
20    pub n_qubits: usize,
21    /// Quantum gate configuration
22    pub gate_sequence: Vec<QuantumGate>,
23    /// Classical simulation backend
24    pub backend: QuantumBackend,
25}
26
27/// Quantum gate types for the transformer
28#[derive(Debug, Clone)]
29pub enum QuantumGate {
30    /// Hadamard gate
31    Hadamard(usize),
32    /// Pauli-X gate  
33    PauliX(usize),
34    /// Pauli-Y gate
35    PauliY(usize),
36    /// Pauli-Z gate
37    PauliZ(usize),
38    /// Rotation gate around X axis
39    RotationX(usize, f64),
40    /// Rotation gate around Y axis
41    RotationY(usize, f64),
42    /// Rotation gate around Z axis
43    RotationZ(usize, f64),
44    /// CNOT gate
45    CNOT(usize, usize),
46}
47
48/// Quantum computing backend configuration
49#[derive(Debug, Clone)]
50pub enum QuantumBackend {
51    /// Classical simulation (default)
52    Simulator,
53    /// IBM Qiskit backend
54    Qiskit,
55    /// Google Cirq backend  
56    Cirq,
57    /// Rigetti Forest backend
58    Forest,
59    /// Azure Quantum backend
60    Azure,
61}
62
63impl Default for QuantumTransformer {
64    fn default() -> Self {
65        Self {
66            n_qubits: 4,
67            gate_sequence: vec![
68                QuantumGate::Hadamard(0),
69                QuantumGate::CNOT(0, 1),
70                QuantumGate::RotationY(1, std::f64::consts::PI / 4.0),
71            ],
72            backend: QuantumBackend::Simulator,
73        }
74    }
75}
76
77impl QuantumTransformer {
78    /// Create a new quantum transformer
79    #[must_use]
80    pub fn new(n_qubits: usize) -> Self {
81        Self {
82            n_qubits,
83            ..Default::default()
84        }
85    }
86
87    /// Add a quantum gate to the sequence
88    pub fn add_gate(&mut self, gate: QuantumGate) -> &mut Self {
89        self.gate_sequence.push(gate);
90        self
91    }
92
93    /// Set the quantum backend
94    #[must_use]
95    pub fn with_backend(mut self, backend: QuantumBackend) -> Self {
96        self.backend = backend;
97        self
98    }
99
100    /// Apply quantum transformation to input data
101    fn apply_quantum_transform(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
102        // Classical simulation of quantum transformation
103        let mut transformed = data.clone();
104
105        // Apply quantum-inspired transformations based on gate sequence
106        for gate in &self.gate_sequence {
107            match gate {
108                QuantumGate::Hadamard(qubit) => {
109                    // Apply Hadamard-like transformation
110                    if *qubit < transformed.ncols() {
111                        for mut row in transformed.rows_mut() {
112                            let val = row[*qubit];
113                            row[*qubit] = val / std::f64::consts::SQRT_2;
114                        }
115                    }
116                }
117                QuantumGate::RotationY(qubit, angle) => {
118                    // Apply Y-rotation transformation
119                    if *qubit < transformed.ncols() {
120                        for mut row in transformed.rows_mut() {
121                            let val = row[*qubit];
122                            row[*qubit] = val * angle.cos();
123                        }
124                    }
125                }
126                QuantumGate::CNOT(control, target) => {
127                    // Apply controlled transformation
128                    if *control < transformed.ncols() && *target < transformed.ncols() {
129                        for mut row in transformed.rows_mut() {
130                            if row[*control] > 0.0 {
131                                row[*target] = -row[*target];
132                            }
133                        }
134                    }
135                }
136                _ => {
137                    // Placeholder for other gates - skip to next gate
138                }
139            }
140        }
141
142        Ok(transformed)
143    }
144}
145
146impl<T: Clone + Into<f64> + Debug> Transform<Array2<T>, Array2<f64>> for QuantumTransformer {
147    fn transform(&self, input: &Array2<T>) -> Result<Array2<f64>> {
148        // Convert input to f64
149        let data = input.mapv(std::convert::Into::into);
150        self.apply_quantum_transform(&data)
151    }
152}
153
154/// Quantum-inspired ensemble for combining classical and quantum models
155#[derive(Debug, Clone)]
156pub struct QuantumEnsemble<T> {
157    /// Classical models in the ensemble
158    pub classical_models: Vec<T>,
159    /// Quantum transformers
160    pub quantum_transformers: Vec<QuantumTransformer>,
161    /// Ensemble weights
162    pub weights: Array1<f64>,
163}
164
165impl<T> QuantumEnsemble<T> {
166    /// Create a new quantum ensemble
167    #[must_use]
168    pub fn new() -> Self {
169        Self {
170            classical_models: Vec::new(),
171            quantum_transformers: Vec::new(),
172            weights: Array1::zeros(0),
173        }
174    }
175
176    /// Add a classical model to the ensemble
177    pub fn add_classical_model(mut self, model: T) -> Self {
178        self.classical_models.push(model);
179        self
180    }
181
182    /// Add a quantum transformer to the ensemble  
183    #[must_use]
184    pub fn add_quantum_transformer(mut self, transformer: QuantumTransformer) -> Self {
185        self.quantum_transformers.push(transformer);
186        self
187    }
188
189    /// Set ensemble weights
190    #[must_use]
191    pub fn with_weights(mut self, weights: Array1<f64>) -> Self {
192        self.weights = weights;
193        self
194    }
195}
196
197impl<T> Default for QuantumEnsemble<T> {
198    fn default() -> Self {
199        Self::new()
200    }
201}
202
203/// Quantum pipeline builder for creating quantum-classical hybrid workflows
204#[derive(Debug)]
205pub struct QuantumPipelineBuilder {
206    steps: Vec<QuantumPipelineStep>,
207}
208
209/// Steps in a quantum pipeline
210#[derive(Debug)]
211pub enum QuantumPipelineStep {
212    /// Classical preprocessing step
213    ClassicalPreprocess(String),
214    /// Quantum transformation step
215    QuantumTransform(QuantumTransformer),
216    /// Classical model step
217    ClassicalModel(String),
218    /// Quantum measurement step
219    QuantumMeasurement,
220}
221
222impl QuantumPipelineBuilder {
223    /// Create a new quantum pipeline builder
224    #[must_use]
225    pub fn new() -> Self {
226        Self { steps: Vec::new() }
227    }
228
229    /// Add a classical preprocessing step
230    #[must_use]
231    pub fn add_classical_preprocess(mut self, name: String) -> Self {
232        self.steps
233            .push(QuantumPipelineStep::ClassicalPreprocess(name));
234        self
235    }
236
237    /// Add a quantum transformation step
238    #[must_use]
239    pub fn add_quantum_transform(mut self, transformer: QuantumTransformer) -> Self {
240        self.steps
241            .push(QuantumPipelineStep::QuantumTransform(transformer));
242        self
243    }
244
245    /// Add a classical model step
246    #[must_use]
247    pub fn add_classical_model(mut self, name: String) -> Self {
248        self.steps.push(QuantumPipelineStep::ClassicalModel(name));
249        self
250    }
251
252    /// Add a quantum measurement step
253    #[must_use]
254    pub fn add_quantum_measurement(mut self) -> Self {
255        self.steps.push(QuantumPipelineStep::QuantumMeasurement);
256        self
257    }
258
259    /// Build the quantum pipeline
260    #[must_use]
261    pub fn build(self) -> QuantumPipeline {
262        QuantumPipeline { steps: self.steps }
263    }
264}
265
266impl Default for QuantumPipelineBuilder {
267    fn default() -> Self {
268        Self::new()
269    }
270}
271
272/// Quantum-classical hybrid pipeline
273#[derive(Debug)]
274pub struct QuantumPipeline {
275    steps: Vec<QuantumPipelineStep>,
276}
277
278impl QuantumPipeline {
279    /// Execute the quantum pipeline
280    pub fn execute(&self, input: &Array2<f64>) -> Result<Array2<f64>> {
281        let mut data = input.clone();
282
283        for step in &self.steps {
284            match step {
285                QuantumPipelineStep::QuantumTransform(transformer) => {
286                    data = transformer.apply_quantum_transform(&data)?;
287                }
288                QuantumPipelineStep::QuantumMeasurement => {
289                    // Apply measurement operator (collapse to classical state)
290                    data = data.mapv(|x| if x.abs() > 0.5 { 1.0 } else { 0.0 });
291                }
292                _ => {
293                    // Placeholder for other steps - skip to next step
294                }
295            }
296        }
297
298        Ok(data)
299    }
300}
301
302/// Hybrid quantum-classical workflow system
303#[derive(Debug, Clone)]
304pub struct HybridQuantumClassicalWorkflow {
305    /// Quantum circuit components
306    pub quantum_circuits: Vec<QuantumCircuit>,
307    /// Classical processing components  
308    pub classical_processors: Vec<ClassicalProcessor>,
309    /// Workflow orchestration
310    pub orchestrator: WorkflowOrchestrator,
311    /// Optimization strategy
312    pub optimization_strategy: QuantumClassicalOptimization,
313}
314
315/// Quantum circuit representation
316#[derive(Debug, Clone)]
317pub struct QuantumCircuit {
318    /// Circuit identifier
319    pub id: String,
320    /// Number of qubits
321    pub n_qubits: usize,
322    /// Circuit depth
323    pub depth: usize,
324    /// Gate sequence
325    pub gates: Vec<QuantumGate>,
326    /// Circuit parameters (for parameterized circuits)
327    pub parameters: Vec<f64>,
328}
329
330/// Classical processor for hybrid workflows
331#[derive(Debug, Clone)]
332pub struct ClassicalProcessor {
333    /// Processor identifier
334    pub id: String,
335    /// Processing function type
336    pub processor_type: ClassicalProcessorType,
337    /// Configuration parameters
338    pub config: HashMap<String, f64>,
339}
340
341/// Types of classical processors
342#[derive(Debug, Clone)]
343pub enum ClassicalProcessorType {
344    /// Optimization algorithm
345    Optimizer(OptimizerType),
346    /// Data preprocessor
347    Preprocessor(PreprocessorType),
348    /// Model evaluator
349    Evaluator(EvaluatorType),
350    /// Parameter encoder/decoder
351    Encoder(EncoderType),
352}
353
354/// Optimizer types for quantum-classical optimization
355#[derive(Debug, Clone)]
356pub enum OptimizerType {
357    /// Variational Quantum Eigensolver
358    VQE,
359    /// Quantum Approximate Optimization Algorithm
360    QAOA,
361    /// Classical optimization
362    Classical(String),
363    /// Hybrid optimization
364    Hybrid,
365}
366
367/// Preprocessor types
368#[derive(Debug, Clone)]
369pub enum PreprocessorType {
370    /// Feature encoding for quantum states
371    QuantumFeatureEncoding,
372    /// Amplitude encoding
373    AmplitudeEncoding,
374    /// Angle encoding
375    AngleEncoding,
376    /// Basis encoding
377    BasisEncoding,
378}
379
380/// Evaluator types
381#[derive(Debug, Clone)]
382pub enum EvaluatorType {
383    /// Cost function evaluation
384    CostFunction,
385    /// Expectation value calculation
386    ExpectationValue,
387    /// Fidelity measurement
388    Fidelity,
389    /// Entanglement measure
390    Entanglement,
391}
392
393/// Encoder types
394#[derive(Debug, Clone)]
395pub enum EncoderType {
396    /// Classical-to-quantum encoding
397    Classical2Quantum,
398    /// Quantum-to-classical decoding
399    Quantum2Classical,
400    /// Parameter encoding
401    Parameter,
402}
403
404/// Workflow orchestration system
405#[derive(Debug, Clone)]
406pub struct WorkflowOrchestrator {
407    /// Execution schedule
408    pub schedule: WorkflowSchedule,
409    /// Resource allocation
410    pub resources: QuantumResourceManager,
411    /// Synchronization points
412    pub sync_points: Vec<SynchronizationPoint>,
413}
414
415/// Workflow scheduling strategies
416#[derive(Debug, Clone)]
417pub enum WorkflowSchedule {
418    /// Sequential execution
419    Sequential,
420    /// Parallel quantum-classical execution
421    Parallel,
422    /// Adaptive scheduling based on resource availability
423    Adaptive,
424    /// Time-sliced execution
425    TimeSliced { slice_duration: Duration },
426}
427
428/// Quantum resource manager
429#[derive(Debug, Clone)]
430pub struct QuantumResourceManager {
431    /// Available quantum backends
432    pub backends: Vec<QuantumBackend>,
433    /// Resource allocation strategy
434    pub allocation_strategy: ResourceAllocationStrategy,
435    /// Current resource usage
436    pub usage: ResourceUsage,
437}
438
439/// Resource allocation strategies
440#[derive(Debug, Clone)]
441pub enum ResourceAllocationStrategy {
442    /// First available
443    FirstAvailable,
444    /// Load balancing
445    LoadBalanced,
446    /// Optimization-aware allocation
447    OptimizationAware,
448    /// Cost-based allocation
449    CostBased,
450}
451
452/// Resource usage tracking
453#[derive(Debug, Clone)]
454pub struct ResourceUsage {
455    /// Quantum processing unit usage
456    pub qpu_usage: HashMap<String, f64>,
457    /// Memory usage
458    pub memory_usage: HashMap<String, u64>,
459    /// Network bandwidth usage
460    pub network_usage: HashMap<String, f64>,
461}
462
463/// Synchronization points for hybrid workflows
464#[derive(Debug, Clone)]
465pub struct SynchronizationPoint {
466    /// Synchronization identifier
467    pub id: String,
468    /// Components to synchronize
469    pub components: Vec<String>,
470    /// Synchronization type
471    pub sync_type: SynchronizationType,
472    /// Timeout duration
473    pub timeout: Option<Duration>,
474}
475
476/// Types of synchronization
477#[derive(Debug, Clone)]
478pub enum SynchronizationType {
479    /// Wait for all components
480    BarrierSync,
481    /// Wait for any component
482    AnySync,
483    /// Conditional synchronization
484    ConditionalSync(String),
485    /// Data exchange synchronization
486    DataExchange,
487}
488
489/// Quantum-classical optimization strategies
490#[derive(Debug, Clone)]
491pub enum QuantumClassicalOptimization {
492    /// Variational approach
493    Variational {
494        classical_optimizer: String,
495        quantum_ansatz: String,
496        max_iterations: usize,
497    },
498    /// Adiabatic approach
499    Adiabatic {
500        evolution_time: f64,
501        schedule_function: String,
502    },
503    /// Hybrid optimization
504    Hybrid {
505        quantum_steps: usize,
506        classical_steps: usize,
507        convergence_threshold: f64,
508    },
509    /// Machine learning guided
510    MLGuided {
511        model_type: String,
512        training_iterations: usize,
513    },
514}
515
516/// Quantum advantage analysis system
517#[derive(Debug)]
518pub struct QuantumAdvantageAnalyzer {
519    /// Benchmarking suite
520    pub benchmarks: Vec<QuantumBenchmark>,
521    /// Classical baselines
522    pub classical_baselines: Vec<ClassicalBaseline>,
523    /// Advantage metrics
524    pub metrics: AdvantageMetrics,
525    /// Analysis results
526    pub results: Option<AdvantageAnalysisResult>,
527}
528
529/// Quantum benchmark definition
530#[derive(Debug, Clone)]
531pub struct QuantumBenchmark {
532    /// Benchmark name
533    pub name: String,
534    /// Problem size
535    pub problem_size: usize,
536    /// Quantum algorithm
537    pub quantum_algorithm: QuantumAlgorithm,
538    /// Expected complexity
539    pub complexity: AlgorithmComplexity,
540}
541
542/// Quantum algorithm types
543#[derive(Debug, Clone)]
544pub enum QuantumAlgorithm {
545    /// Shor's algorithm for factoring
546    Shor,
547    /// Grover's search algorithm
548    Grover,
549    /// Variational Quantum Eigensolver
550    VQE,
551    /// Quantum Approximate Optimization Algorithm
552    QAOA,
553    /// Quantum Machine Learning algorithm
554    QML(String),
555    /// Custom algorithm
556    Custom(String),
557}
558
559/// Classical baseline for comparison
560#[derive(Debug, Clone)]
561pub struct ClassicalBaseline {
562    /// Algorithm name
563    pub name: String,
564    /// Implementation details
565    pub implementation: String,
566    /// Performance characteristics
567    pub performance: PerformanceProfile,
568}
569
570/// Performance profile
571#[derive(Debug, Clone)]
572pub struct PerformanceProfile {
573    /// Time complexity
574    pub time_complexity: String,
575    /// Space complexity
576    pub space_complexity: String,
577    /// Actual runtime
578    pub runtime: Duration,
579    /// Memory usage
580    pub memory_usage: u64,
581}
582
583/// Algorithm complexity analysis
584#[derive(Debug, Clone)]
585pub struct AlgorithmComplexity {
586    /// Classical complexity
587    pub classical: String,
588    /// Quantum complexity
589    pub quantum: String,
590    /// Speedup factor
591    pub speedup_factor: Option<f64>,
592}
593
594/// Advantage analysis metrics
595#[derive(Debug, Clone)]
596pub struct AdvantageMetrics {
597    /// Speed advantage
598    pub speed_advantage: f64,
599    /// Memory advantage
600    pub memory_advantage: f64,
601    /// Energy efficiency
602    pub energy_efficiency: f64,
603    /// Accuracy improvement
604    pub accuracy_improvement: f64,
605    /// Noise resilience
606    pub noise_resilience: f64,
607}
608
609/// Advantage analysis result
610#[derive(Debug, Clone)]
611pub struct AdvantageAnalysisResult {
612    /// Overall advantage score
613    pub advantage_score: f64,
614    /// Detailed breakdown
615    pub breakdown: HashMap<String, f64>,
616    /// Recommendations
617    pub recommendations: Vec<String>,
618    /// Confidence interval
619    pub confidence_interval: (f64, f64),
620}
621
622/// Quantum workflow scheduler
623#[derive(Debug)]
624pub struct QuantumWorkflowScheduler {
625    /// Scheduling queue
626    pub queue: VecDeque<ScheduledWorkflow>,
627    /// Resource manager
628    pub resource_manager: QuantumResourceManager,
629    /// Scheduling strategy
630    pub strategy: SchedulingStrategy,
631    /// Performance monitor
632    pub monitor: PerformanceMonitor,
633}
634
635/// Scheduled workflow item
636#[derive(Debug, Clone)]
637pub struct ScheduledWorkflow {
638    /// Workflow identifier
639    pub id: String,
640    /// Workflow definition
641    pub workflow: HybridQuantumClassicalWorkflow,
642    /// Scheduling priority
643    pub priority: SchedulingPriority,
644    /// Resource requirements
645    pub requirements: ResourceRequirements,
646    /// Deadline (optional)
647    pub deadline: Option<Instant>,
648    /// Dependencies
649    pub dependencies: Vec<String>,
650}
651
652/// Scheduling priority levels
653#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
654pub enum SchedulingPriority {
655    /// Low priority
656    Low,
657    /// Normal priority
658    Normal,
659    /// High priority
660    High,
661    /// Critical priority
662    Critical,
663}
664
665/// Resource requirements specification
666#[derive(Debug, Clone)]
667pub struct ResourceRequirements {
668    /// Required qubits
669    pub qubits: usize,
670    /// Circuit depth limit
671    pub max_depth: usize,
672    /// Memory requirements
673    pub memory: u64,
674    /// Execution time estimate
675    pub estimated_time: Duration,
676    /// Quality requirements
677    pub quality: QualityRequirements,
678}
679
680/// Quality requirements
681#[derive(Debug, Clone)]
682pub struct QualityRequirements {
683    /// Maximum acceptable error rate
684    pub max_error_rate: f64,
685    /// Required fidelity
686    pub min_fidelity: f64,
687    /// Coherence time requirements
688    pub min_coherence_time: Duration,
689}
690
691/// Scheduling strategies
692#[derive(Debug, Clone)]
693pub enum SchedulingStrategy {
694    /// First-Come-First-Served
695    FCFS,
696    /// Shortest Job First
697    SJF,
698    /// Priority-based scheduling
699    Priority,
700    /// Deadline-aware scheduling
701    DeadlineAware,
702    /// Resource-aware scheduling
703    ResourceAware,
704    /// Machine learning guided scheduling
705    MLGuided,
706}
707
708/// Performance monitoring system
709#[derive(Debug)]
710pub struct PerformanceMonitor {
711    /// Execution metrics
712    pub metrics: HashMap<String, PerformanceMetric>,
713    /// Historical data
714    pub history: VecDeque<PerformanceSnapshot>,
715    /// Alerting thresholds
716    pub thresholds: AlertingThresholds,
717}
718
719/// Performance metric
720#[derive(Debug, Clone)]
721pub struct PerformanceMetric {
722    /// Metric name
723    pub name: String,
724    /// Current value
725    pub value: f64,
726    /// Unit of measurement
727    pub unit: String,
728    /// Trend direction
729    pub trend: TrendDirection,
730}
731
732/// Trend direction
733#[derive(Debug, Clone)]
734pub enum TrendDirection {
735    /// Improving
736    Improving,
737    /// Stable
738    Stable,
739    /// Degrading
740    Degrading,
741    /// Unknown
742    Unknown,
743}
744
745/// Performance snapshot
746#[derive(Debug, Clone)]
747pub struct PerformanceSnapshot {
748    /// Timestamp
749    pub timestamp: Instant,
750    /// Metrics at this time
751    pub metrics: HashMap<String, f64>,
752    /// System state
753    pub system_state: SystemState,
754}
755
756/// System state information
757#[derive(Debug, Clone)]
758pub struct SystemState {
759    /// Active workflows
760    pub active_workflows: usize,
761    /// Queue length
762    pub queue_length: usize,
763    /// Resource utilization
764    pub resource_utilization: f64,
765    /// Error rate
766    pub error_rate: f64,
767}
768
769/// Alerting thresholds
770#[derive(Debug, Clone)]
771pub struct AlertingThresholds {
772    /// High utilization threshold
773    pub high_utilization: f64,
774    /// High error rate threshold
775    pub high_error_rate: f64,
776    /// Long queue threshold
777    pub long_queue: usize,
778    /// Deadline miss threshold
779    pub deadline_miss_rate: f64,
780}
781
782#[allow(non_snake_case)]
783#[cfg(test)]
784mod tests {
785    use super::*;
786    use scirs2_core::ndarray::Array2;
787
788    #[test]
789    fn test_quantum_transformer_creation() {
790        let transformer = QuantumTransformer::new(4);
791        assert_eq!(transformer.n_qubits, 4);
792    }
793
794    #[test]
795    fn test_quantum_transformer_with_gates() {
796        let mut transformer = QuantumTransformer::new(2);
797        transformer.add_gate(QuantumGate::Hadamard(0));
798        transformer.add_gate(QuantumGate::CNOT(0, 1));
799
800        assert_eq!(transformer.gate_sequence.len(), 5); // 3 default + 2 added
801    }
802
803    #[test]
804    fn test_quantum_transform() {
805        let transformer = QuantumTransformer::default();
806        let input = Array2::from_shape_vec((2, 2), vec![1.0, 2.0, 3.0, 4.0]).unwrap();
807
808        let result = transformer.transform(&input);
809        assert!(result.is_ok());
810
811        let transformed = result.unwrap();
812        assert_eq!(transformed.shape(), input.shape());
813    }
814
815    #[test]
816    fn test_quantum_ensemble_creation() {
817        let ensemble: QuantumEnsemble<String> = QuantumEnsemble::new()
818            .add_classical_model("linear_regression".to_string())
819            .add_quantum_transformer(QuantumTransformer::default());
820
821        assert_eq!(ensemble.classical_models.len(), 1);
822        assert_eq!(ensemble.quantum_transformers.len(), 1);
823    }
824
825    #[test]
826    fn test_quantum_pipeline_builder() {
827        let pipeline = QuantumPipelineBuilder::new()
828            .add_classical_preprocess("normalize".to_string())
829            .add_quantum_transform(QuantumTransformer::default())
830            .add_quantum_measurement()
831            .add_classical_model("svm".to_string())
832            .build();
833
834        assert_eq!(pipeline.steps.len(), 4);
835    }
836
837    #[test]
838    fn test_quantum_pipeline_execution() {
839        let pipeline = QuantumPipelineBuilder::new()
840            .add_quantum_transform(QuantumTransformer::default())
841            .add_quantum_measurement()
842            .build();
843
844        let input = Array2::from_shape_vec((2, 2), vec![0.1, 0.2, 0.8, 0.9]).unwrap();
845        let result = pipeline.execute(&input);
846
847        assert!(result.is_ok());
848        let output = result.unwrap();
849        assert_eq!(output.shape(), input.shape());
850    }
851
852    #[test]
853    fn test_quantum_backend_types() {
854        let transformer = QuantumTransformer::default().with_backend(QuantumBackend::Qiskit);
855
856        matches!(transformer.backend, QuantumBackend::Qiskit);
857    }
858
859    #[test]
860    fn test_hybrid_quantum_classical_workflow() {
861        let quantum_circuit = QuantumCircuit {
862            id: "test_circuit".to_string(),
863            n_qubits: 4,
864            depth: 10,
865            gates: vec![QuantumGate::Hadamard(0), QuantumGate::CNOT(0, 1)],
866            parameters: vec![0.5, 1.0],
867        };
868
869        let classical_processor = ClassicalProcessor {
870            id: "optimizer".to_string(),
871            processor_type: ClassicalProcessorType::Optimizer(OptimizerType::VQE),
872            config: HashMap::new(),
873        };
874
875        let workflow = HybridQuantumClassicalWorkflow {
876            quantum_circuits: vec![quantum_circuit],
877            classical_processors: vec![classical_processor],
878            orchestrator: WorkflowOrchestrator {
879                schedule: WorkflowSchedule::Sequential,
880                resources: QuantumResourceManager {
881                    backends: vec![QuantumBackend::Simulator],
882                    allocation_strategy: ResourceAllocationStrategy::FirstAvailable,
883                    usage: ResourceUsage {
884                        qpu_usage: HashMap::new(),
885                        memory_usage: HashMap::new(),
886                        network_usage: HashMap::new(),
887                    },
888                },
889                sync_points: vec![],
890            },
891            optimization_strategy: QuantumClassicalOptimization::Variational {
892                classical_optimizer: "ADAM".to_string(),
893                quantum_ansatz: "Hardware Efficient".to_string(),
894                max_iterations: 100,
895            },
896        };
897
898        assert_eq!(workflow.quantum_circuits.len(), 1);
899        assert_eq!(workflow.classical_processors.len(), 1);
900    }
901
902    #[test]
903    fn test_quantum_advantage_analyzer() {
904        let benchmark = QuantumBenchmark {
905            name: "VQE H2 molecule".to_string(),
906            problem_size: 4,
907            quantum_algorithm: QuantumAlgorithm::VQE,
908            complexity: AlgorithmComplexity {
909                classical: "O(4^n)".to_string(),
910                quantum: "O(n^3)".to_string(),
911                speedup_factor: Some(16.0),
912            },
913        };
914
915        let baseline = ClassicalBaseline {
916            name: "Full Configuration Interaction".to_string(),
917            implementation: "SciPy sparse eigenvalue solver".to_string(),
918            performance: PerformanceProfile {
919                time_complexity: "O(4^n)".to_string(),
920                space_complexity: "O(4^n)".to_string(),
921                runtime: Duration::from_secs(3600),
922                memory_usage: 1_000_000_000,
923            },
924        };
925
926        let analyzer = QuantumAdvantageAnalyzer {
927            benchmarks: vec![benchmark],
928            classical_baselines: vec![baseline],
929            metrics: AdvantageMetrics {
930                speed_advantage: 16.0,
931                memory_advantage: 8.0,
932                energy_efficiency: 2.0,
933                accuracy_improvement: 1.1,
934                noise_resilience: 0.8,
935            },
936            results: None,
937        };
938
939        assert_eq!(analyzer.benchmarks.len(), 1);
940        assert_eq!(analyzer.classical_baselines.len(), 1);
941        assert_eq!(analyzer.metrics.speed_advantage, 16.0);
942    }
943
944    #[test]
945    fn test_quantum_workflow_scheduler() {
946        let workflow = HybridQuantumClassicalWorkflow {
947            quantum_circuits: vec![],
948            classical_processors: vec![],
949            orchestrator: WorkflowOrchestrator {
950                schedule: WorkflowSchedule::Sequential,
951                resources: QuantumResourceManager {
952                    backends: vec![QuantumBackend::Simulator],
953                    allocation_strategy: ResourceAllocationStrategy::FirstAvailable,
954                    usage: ResourceUsage {
955                        qpu_usage: HashMap::new(),
956                        memory_usage: HashMap::new(),
957                        network_usage: HashMap::new(),
958                    },
959                },
960                sync_points: vec![],
961            },
962            optimization_strategy: QuantumClassicalOptimization::Hybrid {
963                quantum_steps: 10,
964                classical_steps: 5,
965                convergence_threshold: 1e-6,
966            },
967        };
968
969        let scheduled_workflow = ScheduledWorkflow {
970            id: "test_workflow".to_string(),
971            workflow,
972            priority: SchedulingPriority::Normal,
973            requirements: ResourceRequirements {
974                qubits: 8,
975                max_depth: 100,
976                memory: 1_000_000,
977                estimated_time: Duration::from_secs(300),
978                quality: QualityRequirements {
979                    max_error_rate: 0.01,
980                    min_fidelity: 0.95,
981                    min_coherence_time: Duration::from_micros(100),
982                },
983            },
984            deadline: None,
985            dependencies: vec![],
986        };
987
988        let scheduler = QuantumWorkflowScheduler {
989            queue: VecDeque::from([scheduled_workflow]),
990            resource_manager: QuantumResourceManager {
991                backends: vec![QuantumBackend::Simulator, QuantumBackend::Qiskit],
992                allocation_strategy: ResourceAllocationStrategy::LoadBalanced,
993                usage: ResourceUsage {
994                    qpu_usage: HashMap::new(),
995                    memory_usage: HashMap::new(),
996                    network_usage: HashMap::new(),
997                },
998            },
999            strategy: SchedulingStrategy::Priority,
1000            monitor: PerformanceMonitor {
1001                metrics: HashMap::new(),
1002                history: VecDeque::new(),
1003                thresholds: AlertingThresholds {
1004                    high_utilization: 0.8,
1005                    high_error_rate: 0.05,
1006                    long_queue: 10,
1007                    deadline_miss_rate: 0.1,
1008                },
1009            },
1010        };
1011
1012        assert_eq!(scheduler.queue.len(), 1);
1013        assert_eq!(scheduler.resource_manager.backends.len(), 2);
1014        assert!(matches!(scheduler.strategy, SchedulingStrategy::Priority));
1015    }
1016
1017    #[test]
1018    fn test_scheduling_priority_ordering() {
1019        let mut priorities = vec![
1020            SchedulingPriority::Low,
1021            SchedulingPriority::Critical,
1022            SchedulingPriority::Normal,
1023            SchedulingPriority::High,
1024        ];
1025
1026        priorities.sort();
1027
1028        assert_eq!(priorities[0], SchedulingPriority::Low);
1029        assert_eq!(priorities[1], SchedulingPriority::Normal);
1030        assert_eq!(priorities[2], SchedulingPriority::High);
1031        assert_eq!(priorities[3], SchedulingPriority::Critical);
1032    }
1033
1034    #[test]
1035    fn test_quantum_classical_optimization_strategies() {
1036        let variational = QuantumClassicalOptimization::Variational {
1037            classical_optimizer: "L-BFGS-B".to_string(),
1038            quantum_ansatz: "UCCSD".to_string(),
1039            max_iterations: 200,
1040        };
1041
1042        let adiabatic = QuantumClassicalOptimization::Adiabatic {
1043            evolution_time: 1000.0,
1044            schedule_function: "linear".to_string(),
1045        };
1046
1047        let hybrid = QuantumClassicalOptimization::Hybrid {
1048            quantum_steps: 50,
1049            classical_steps: 25,
1050            convergence_threshold: 1e-8,
1051        };
1052
1053        match variational {
1054            QuantumClassicalOptimization::Variational { max_iterations, .. } => {
1055                assert_eq!(max_iterations, 200)
1056            }
1057            _ => panic!("Wrong optimization type"),
1058        }
1059
1060        match adiabatic {
1061            QuantumClassicalOptimization::Adiabatic { evolution_time, .. } => {
1062                assert_eq!(evolution_time, 1000.0)
1063            }
1064            _ => panic!("Wrong optimization type"),
1065        }
1066
1067        match hybrid {
1068            QuantumClassicalOptimization::Hybrid {
1069                quantum_steps,
1070                classical_steps,
1071                ..
1072            } => {
1073                assert_eq!(quantum_steps, 50);
1074                assert_eq!(classical_steps, 25);
1075            }
1076            _ => panic!("Wrong optimization type"),
1077        }
1078    }
1079}