sklears-compose 0.1.0-alpha.2

Composite estimators and transformers
Documentation
# Sklears-Compose Architecture Guide

This document provides a comprehensive overview of the sklears-compose architecture, design patterns, and implementation strategies.

## Overview

Sklears-compose implements a sophisticated machine learning pipeline composition framework with a three-layer architecture designed for performance, safety, and extensibility.

## Three-Layer Architecture

### 1. Data Layer
- **Primary**: Polars DataFrames for efficient data manipulation
- **Secondary**: NDArray integration for numerical computations
- **Features**:
  - Zero-copy operations where possible
  - Lazy evaluation for memory efficiency
  - Type-safe column operations

### 2. Computation Layer
- **Primary**: NumRS2 arrays with BLAS/LAPACK integration
- **SIMD**: Hardware-accelerated operations via SIMD instructions
- **Memory**: Efficient memory layouts and allocation strategies
- **Features**:
  - Cache-friendly data structures
  - SIMD vectorization for critical paths
  - Memory pool management

### 3. Algorithm Layer
- **Foundation**: SciRS2 for scientific computing primitives
- **ML Algorithms**: Estimators, transformers, and ensemble methods
- **Composition**: Pipeline orchestration and workflow management
- **Features**:
  - Type-safe algorithm composition
  - Parallel execution capabilities
  - Advanced optimization techniques

## Core Design Patterns

### Type-Safe State Machines

The framework uses Rust's type system to enforce correct pipeline usage:

```rust
// Pipeline states tracked at compile time
pub struct Pipeline<S = Untrained> {
    state: S,
    steps: Vec<PipelineStep>,
}

// State transitions are type-safe
impl Pipeline<Untrained> {
    pub fn fit(self, X: &Array2<f64>, y: &Array1<f64>) -> Result<Pipeline<Trained>> {
        // Training logic
    }
}

impl Pipeline<Trained> {
    pub fn predict(&self, X: &Array2<f64>) -> Result<Array1<f64>> {
        // Prediction logic
    }
}
```

### Builder Pattern for Ergonomic APIs

Complex configurations use the builder pattern for clarity:

```rust
let pipeline = Pipeline::builder()
    .step("preprocessor", Box::new(StandardScaler::new()))
    .step("feature_selection", Box::new(SelectKBest::new(10)))
    .step("classifier", Box::new(RandomForest::new()))
    .build()?;
```

### Trait-Based Composition

Core traits enable flexible algorithm composition:

```rust
pub trait Estimator {
    type Config: Clone + Debug;
    fn config(&self) -> &Self::Config;
}

pub trait Fit<X, Y>: Estimator {
    type Fitted;
    fn fit(self, X: &X, y: &Y) -> Result<Self::Fitted>;
}

pub trait Predict<X>: Estimator {
    type Target;
    fn predict(&self, X: &X) -> Result<Self::Target>;
}

pub trait Transform<X>: Estimator {
    type Output;
    fn transform(&self, X: &X) -> Result<Self::Output>;
}
```

## Key Components

### Pipeline Orchestration

#### Sequential Pipelines
- Linear composition of transformers and estimators
- Lazy evaluation and caching support
- Memory-efficient execution

#### DAG Pipelines
- Complex dependency management
- Parallel execution optimization
- Cycle detection and prevention

#### Conditional Pipelines
- Data-dependent routing
- Dynamic pipeline modification
- Adaptive preprocessing

### Data Processing

#### ColumnTransformer
```rust
let transformer = ColumnTransformerBuilder::new()
    .add_transformer("numerical", StandardScaler::new(), numerical_cols)
    .add_transformer("categorical", OneHotEncoder::new(), categorical_cols)
    .build()?;
```

#### Feature Engineering
- Automated feature generation
- Feature selection algorithms
- Interaction detection

### Ensemble Methods

#### Voting Classifiers/Regressors
- Hard and soft voting strategies
- Weighted ensemble combinations
- Heterogeneous model support

#### Stacking Ensembles
- Multi-level model composition
- Cross-validation integration
- Meta-learner optimization

### Cross-Validation Framework

#### Comprehensive CV Strategies
- K-fold, stratified, time series splits
- Nested cross-validation
- Custom splitting strategies

#### Performance Evaluation
- Multiple scoring metrics
- Statistical significance testing
- Robust evaluation protocols

## Performance Optimizations

### SIMD Acceleration

Critical numerical operations use SIMD instructions:

```rust
// Example: Vectorized array operations
pub fn simd_dot_product(a: &[f64], b: &[f64]) -> f64 {
    #[cfg(target_feature = "avx2")]
    {
        // AVX2 implementation
        unsafe { avx2_dot_product(a, b) }
    }
    #[cfg(not(target_feature = "avx2"))]
    {
        // Scalar fallback
        a.iter().zip(b.iter()).map(|(x, y)| x * y).sum()
    }
}
```

### Memory Management

#### Zero-Cost Abstractions
- Compile-time optimizations
- Inline small functions
- Eliminate unnecessary allocations

#### Memory Pools
- Reusable buffer management
- Reduced allocation overhead
- Configurable pool sizes

#### Streaming Processing
- Constant memory usage
- Incremental data processing
- Backpressure handling

### Parallel Execution

#### Work-Stealing Schedulers
- Dynamic load balancing
- Minimal synchronization overhead
- NUMA-aware task distribution

#### Lock-Free Data Structures
- High-performance concurrent access
- Atomic operations for coordination
- Memory ordering guarantees

## Error Handling and Robustness

### Enhanced Error Types

```rust
#[derive(Debug, Clone)]
pub enum PipelineError {
    ConfigurationError {
        message: String,
        suggestions: Vec<String>,
        context: ErrorContext,
    },
    DataCompatibilityError {
        expected: DataShape,
        actual: DataShape,
        stage: String,
        suggestions: Vec<String>,
    },
    // ... other error types
}
```

### Recovery Mechanisms
- Graceful degradation strategies
- Fallback algorithm selection
- Automatic retry with backoff

### Validation Framework
- Input data validation
- Configuration consistency checks
- Pipeline structure verification

## Monitoring and Observability

### Performance Tracking
- Execution time measurement
- Memory usage monitoring
- Throughput analysis

### Distributed Tracing
- Cross-service pipeline tracking
- Performance bottleneck identification
- Dependency analysis

### Automated Alerting
- Real-time anomaly detection
- Configurable alert channels
- Escalation policies

## Integration Patterns

### External Tool Integration
- REST API composition
- Database connectivity
- Message queue integration
- Cloud storage support

### Plugin Architecture
- Dynamic component loading
- Type-safe plugin interfaces
- Version compatibility management

### Serialization Support
- Pipeline persistence
- Configuration management
- Model deployment formats

## Advanced Features

### Differentiable Programming
- Automatic differentiation support
- Gradient-based optimization
- End-to-end learning pipelines

### Quantum Computing Integration
- Hybrid quantum-classical workflows
- Quantum advantage analysis
- Specialized quantum algorithms

### AutoML Capabilities
- Neural architecture search
- Hyperparameter optimization
- Automated feature engineering

## Best Practices

### Performance Guidelines

1. **Use appropriate data structures**
   - Sparse matrices for high-dimensional data
   - Streaming for large datasets
   - Memory-mapped arrays for disk-based data

2. **Enable optimizations**
   - SIMD instructions for numerical code
   - Parallel processing for independent operations
   - Caching for repeated computations

3. **Profile before optimizing**
   - Measure actual bottlenecks
   - Use profiling tools
   - Monitor production performance

### Safety Guidelines

1. **Leverage type safety**
   - Use state machines for correctness
   - Implement proper error handling
   - Validate inputs and configurations

2. **Memory safety**
   - Avoid unsafe code unless necessary
   - Use smart pointers appropriately
   - Implement proper cleanup

3. **Concurrency safety**
   - Use message passing over shared state
   - Employ lock-free algorithms where possible
   - Test thoroughly for race conditions

### Maintainability Guidelines

1. **Modular design**
   - Separate concerns clearly
   - Use trait-based interfaces
   - Keep modules focused and cohesive

2. **Documentation**
   - Document public APIs comprehensively
   - Provide usage examples
   - Explain design decisions

3. **Testing**
   - Unit test individual components
   - Integration test pipeline compositions
   - Property-based test for correctness

## Future Directions

### Planned Enhancements

1. **WebAssembly Support**
   - Browser-based pipeline execution
   - Client-side ML workflows
   - JavaScript interoperability

2. **Enhanced Debugging**
   - Visual pipeline debugging
   - Step-by-step execution
   - Interactive data exploration

3. **Cloud-Native Features**
   - Kubernetes orchestration
   - Serverless deployment
   - Auto-scaling capabilities

4. **Advanced Analytics**
   - Real-time streaming analytics
   - Edge computing deployment
   - Federated learning support

### Research Areas

1. **Novel Composition Patterns**
   - Graph neural network pipelines
   - Attention-based composition
   - Reinforcement learning workflows

2. **Performance Innovations**
   - GPU acceleration
   - Distributed computing
   - Hardware specialization

3. **Usability Improvements**
   - Natural language pipeline specification
   - Automated optimization
   - Intelligent error recovery

---

This architecture enables sklears-compose to provide a powerful, flexible, and high-performance machine learning pipeline framework while maintaining Rust's safety guarantees and zero-cost abstraction principles.