sklears-clustering 0.1.0-beta.1

Clustering algorithms for sklears: K-means, DBSCAN, hierarchical clustering
Documentation
# sklears-clustering

[![Crates.io](https://img.shields.io/crates/v/sklears-clustering.svg)](https://crates.io/crates/sklears-clustering)
[![Documentation](https://docs.rs/sklears-clustering/badge.svg)](https://docs.rs/sklears-clustering)
[![License](https://img.shields.io/badge/license-MIT%2FApache-blue.svg)](../../LICENSE)
[![Minimum Rust Version](https://img.shields.io/badge/rustc-1.70+-blue.svg)](https://www.rust-lang.org)

Clustering algorithms for the sklears machine learning library.

> **Latest release:** `0.1.0-beta.1` (January 1, 2026). See the [workspace release notes]../../docs/releases/0.1.0-beta.1.md for highlights and upgrade guidance.

## Overview

This crate provides implementations of clustering algorithms including:

- **K-Means**: Classic centroid-based clustering with k-means++ initialization
- **Mini-Batch K-Means**: Scalable variant for large datasets
- **DBSCAN**: Density-based clustering for arbitrary shaped clusters
- **Hierarchical Clustering**: Agglomerative clustering with various linkage methods
- **Mean Shift**: Mode-seeking clustering algorithm

## Usage

```toml
[dependencies]
sklears = { version = "0.1.0-beta.1", features = ["clustering"] }
```

## Examples

### K-Means Clustering

```rust
use sklears::cluster::KMeans;
use sklears::cluster::InitMethod;

let model = KMeans::new(3)
    .init_method(InitMethod::KMeansPlusPlus)
    .max_iter(300)
    .n_init(10)
    .random_state(42);

let fitted = model.fit(&data)?;
let labels = fitted.predict(&new_data)?;
let centers = fitted.cluster_centers();
```

### DBSCAN

```rust
use sklears::cluster::DBSCAN;

let model = DBSCAN::new()
    .eps(0.5)
    .min_samples(5)
    .metric(Distance::Euclidean);

let labels = model.fit_predict(&data)?;
// -1 indicates noise points
```

## Performance Features

- **SIMD Distance Calculations**: Vectorized distance computations
- **Parallel Assignment**: Multi-threaded cluster assignment
- **Efficient K-D Trees**: For neighbor searches in DBSCAN
- **Memory-Efficient Updates**: In-place operations where possible

### GPU-Accelerated Distances

Enable the optional `gpu` feature to experiment with WebGPU-powered distance kernels. GPU-backed tests are ignored by default because device discovery can be slow; run them explicitly when a compatible GPU is available:

```bash
cargo test -p sklears-clustering --features gpu -- --ignored gpu_distances::gpu::tests::test_gpu_distance_computation
```

## Metrics

The crate includes clustering metrics:
- Silhouette Score
- Calinski-Harabasz Index
- Davies-Bouldin Index
- Inertia

## License

Licensed under either of Apache License, Version 2.0 or MIT license at your option.