# sklears-calibration
[](https://crates.io/crates/sklears-calibration)
[](https://docs.rs/sklears-calibration)
[](../../LICENSE)
[](https://www.rust-lang.org)
> **Latest release:** `0.1.0-beta.1` (January 1, 2026). See the [workspace release notes](../../docs/releases/0.1.0-beta.1.md) for highlights and upgrade guidance.
## Overview
`sklears-calibration` provides probability calibration tools, matching scikit-learn’s calibration module with additional Rust-centric performance improvements.
## Key Features
- **CalibratedClassifierCV**: Platt scaling, isotonic regression, and temperature scaling strategies.
- **Probability Tools**: Reliability diagrams, Brier score decomposition, and calibration curve generation.
- **Integration**: Works with sklears pipelines, model selection, and inspection modules.
- **GPU Support**: Optional CUDA/WebGPU acceleration for large-scale calibration workloads.
## Quick Start
```rust
use sklears_calibration::CalibratedClassifierCV;
use sklears_ensemble::RandomForestClassifier;
let base = RandomForestClassifier::builder()
.n_estimators(200)
.n_jobs(-1)
.build();
let calibrated = CalibratedClassifierCV::builder()
.base_estimator(base)
.method("sigmoid")
.cv(5)
.build();
let fitted = calibrated.fit(&x_train, &y_train)?;
let probas = fitted.predict_proba(&x_test)?;
```
## Status
- Covered by the 11,292 passing workspace tests in `0.1.0-beta.1`.
- API parity with scikit-learn 1.5, including multi-class calibration.
- Future work (Bayesian calibration, streaming reliability) tracked in this crate’s `TODO.md`.