1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
use std::collections::BTreeMap;
use std::sync::Arc;

use anyhow::{anyhow, Context, Result};
use arrow2::array::{
    Array, BinaryArray, Float32Array, Float64Array, Int32Array, Int64Array, MutablePrimitiveArray,
    PrimitiveArray, UInt32Array, UInt64Array,
};
use arrow2::compute::cast;
use arrow2::datatypes::{DataType as ArrowDataType, Field, Schema};
use arrow2::types::NativeType;
use rayon::prelude::*;
use ruint::aliases::U256;
use serde::{Deserialize, Serialize};
use skar_schema::ArrowChunk;

use crate::ArrowBatch;

#[derive(Default, Debug, Clone, Serialize, Deserialize)]
pub struct ColumnMapping {
    #[serde(default)]
    pub block: BTreeMap<String, DataType>,
    #[serde(default)]
    pub transaction: BTreeMap<String, DataType>,
    #[serde(default)]
    pub log: BTreeMap<String, DataType>,
    #[serde(default)]
    pub trace: BTreeMap<String, DataType>,
    #[serde(default)]
    pub decoded_log: BTreeMap<String, DataType>,
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
#[serde(rename_all = "lowercase")]
pub enum DataType {
    Float64,
    Float32,
    UInt64,
    UInt32,
    Int64,
    Int32,
}

impl From<DataType> for ArrowDataType {
    fn from(value: DataType) -> Self {
        match value {
            DataType::Float64 => Self::Float64,
            DataType::Float32 => Self::Float32,
            DataType::UInt64 => Self::UInt64,
            DataType::UInt32 => Self::UInt32,
            DataType::Int64 => Self::Int64,
            DataType::Int32 => Self::Int32,
        }
    }
}

pub fn apply_to_batch(
    batch: &ArrowBatch,
    mapping: &BTreeMap<String, DataType>,
) -> Result<ArrowBatch> {
    if mapping.is_empty() {
        return Ok(batch.clone());
    }

    let (columns, fields) = batch
        .chunk
        .columns()
        .par_iter()
        .zip(batch.schema.fields.par_iter())
        .map(|(col, field)| {
            let (col, field) = match mapping.get(&field.name) {
                Some(&dt) => {
                    let col = map_column(&**col, dt)
                        .context(format!("apply cast to colum '{}'", &field.name))?;
                    let field = Field::new(&field.name, dt.into(), field.is_nullable);

                    (col, field)
                }
                None => (col.clone(), field.clone()),
            };
            Ok((col, field))
        })
        .collect::<Result<(Vec<_>, Vec<_>)>>()?;

    let schema = Arc::new(Schema::from(fields));
    let chunk = ArrowChunk::new(columns);

    Ok(ArrowBatch { schema, chunk })
}

/// Warning: This function does not validate the mapping types!
/// So same mapping might fail if applied to actual data even if this function maps the schema normally.
pub fn apply_to_schema(schema: &Schema, mapping: &BTreeMap<String, DataType>) -> Result<Schema> {
    let fields = schema
        .fields
        .iter()
        .map(|field| match mapping.get(&field.name) {
            Some(&dt) => Field::new(&field.name, dt.into(), field.is_nullable),
            None => field.clone(),
        })
        .collect::<Vec<Field>>();

    Ok(Schema::from(fields))
}

pub fn map_column(col: &dyn Array, target_data_type: DataType) -> Result<Box<dyn Array + 'static>> {
    fn to_box<T: Array>(arr: T) -> Box<dyn Array> {
        Box::new(arr)
    }

    match target_data_type {
        DataType::Float64 => map_to_f64(col).map(to_box),
        DataType::Float32 => map_to_f32(col).map(to_box),
        DataType::UInt64 => map_to_uint64(col).map(to_box),
        DataType::UInt32 => map_to_uint32(col).map(to_box),
        DataType::Int64 => map_to_int64(col).map(to_box),
        DataType::Int32 => map_to_int32(col).map(to_box),
    }
}

fn map_to_f64(col: &dyn Array) -> Result<Float64Array> {
    match col.data_type() {
        &ArrowDataType::Binary => {
            binary_to_target_array(col.as_any().downcast_ref::<BinaryArray<i32>>().unwrap())
        }
        &ArrowDataType::UInt64 => Ok(cast::primitive_as_primitive(
            col.as_any().downcast_ref::<UInt64Array>().unwrap(),
            &ArrowDataType::Float64,
        )),
        dt => Err(anyhow!("Can't convert {:?} to f64", dt)),
    }
}

fn map_to_f32(col: &dyn Array) -> Result<Float32Array> {
    match col.data_type() {
        &ArrowDataType::Binary => {
            binary_to_target_array(col.as_any().downcast_ref::<BinaryArray<i32>>().unwrap())
        }
        &ArrowDataType::UInt64 => Ok(cast::primitive_as_primitive(
            col.as_any().downcast_ref::<UInt64Array>().unwrap(),
            &ArrowDataType::Float32,
        )),
        dt => Err(anyhow!("Can't convert {:?} to f32", dt)),
    }
}

fn map_to_uint64(col: &dyn Array) -> Result<UInt64Array> {
    match col.data_type() {
        &ArrowDataType::Binary => {
            binary_to_target_array(col.as_any().downcast_ref::<BinaryArray<i32>>().unwrap())
        }
        &ArrowDataType::UInt64 => Ok(cast::primitive_as_primitive(
            col.as_any().downcast_ref::<UInt64Array>().unwrap(),
            &ArrowDataType::UInt64,
        )),
        dt => Err(anyhow!("Can't convert {:?} to uint64", dt)),
    }
}

fn map_to_uint32(col: &dyn Array) -> Result<UInt32Array> {
    match col.data_type() {
        &ArrowDataType::Binary => {
            binary_to_target_array(col.as_any().downcast_ref::<BinaryArray<i32>>().unwrap())
        }
        &ArrowDataType::UInt64 => Ok(cast::primitive_as_primitive(
            col.as_any().downcast_ref::<UInt64Array>().unwrap(),
            &ArrowDataType::UInt32,
        )),
        dt => Err(anyhow!("Can't convert {:?} to uint32", dt)),
    }
}

fn map_to_int64(col: &dyn Array) -> Result<Int64Array> {
    match col.data_type() {
        &ArrowDataType::Binary => {
            binary_to_target_array(col.as_any().downcast_ref::<BinaryArray<i32>>().unwrap())
        }
        &ArrowDataType::UInt64 => Ok(cast::primitive_as_primitive(
            col.as_any().downcast_ref::<UInt64Array>().unwrap(),
            &ArrowDataType::Int64,
        )),
        dt => Err(anyhow!("Can't convert {:?} to int64", dt)),
    }
}

fn map_to_int32(col: &dyn Array) -> Result<Int32Array> {
    match col.data_type() {
        &ArrowDataType::Binary => {
            binary_to_target_array(col.as_any().downcast_ref::<BinaryArray<i32>>().unwrap())
        }
        &ArrowDataType::UInt64 => Ok(cast::primitive_as_primitive(
            col.as_any().downcast_ref::<UInt64Array>().unwrap(),
            &ArrowDataType::Int32,
        )),
        dt => Err(anyhow!("Can't convert {:?} to int32", dt)),
    }
}

fn binary_to_target_array<T: NativeType + TryFrom<U256>>(
    src: &BinaryArray<i32>,
) -> Result<PrimitiveArray<T>> {
    let mut out = MutablePrimitiveArray::with_capacity(src.len());

    for val in src.iter() {
        out.push(val.map(binary_to_target).transpose()?);
    }

    Ok(out.into())
}

fn binary_to_target<T: TryFrom<U256>>(src: &[u8]) -> Result<T> {
    let big_num = U256::from_be_slice(src);
    big_num
        .try_into()
        .map_err(|_e| anyhow!("failed to cast number to requested type"))
}