sixtyfps-corelib 0.0.2

Internal SixtyFPS runtime library.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
/* LICENSE BEGIN
    This file is part of the SixtyFPS Project -- https://sixtyfps.io
    Copyright (c) 2020 Olivier Goffart <olivier.goffart@sixtyfps.io>
    Copyright (c) 2020 Simon Hausmann <simon.hausmann@sixtyfps.io>

    SPDX-License-Identifier: GPL-3.0-only
    This file is also available under commercial licensing terms.
    Please contact info@sixtyfps.io for more information.
LICENSE END */
#![warn(missing_docs)]
/*!
    Graphics Abstractions.

    This module contains the abstractions and convenience types to allow the runtime
    library to instruct different graphics backends to render the tree of items.

    The entry trait is [GraphicsBackend].

    The run-time library also makes use of [RenderingCache] to store the rendering primitives
    created by the backend in a type-erased manner.
*/
extern crate alloc;
use crate::input::{KeyEvent, KeyboardModifiers, MouseEvent, MouseEventType};
use crate::items::ItemRef;
use crate::properties::{InterpolatedPropertyValue, Property};
#[cfg(feature = "rtti")]
use crate::rtti::{BuiltinItem, FieldInfo, PropertyInfo, ValueType};
use crate::SharedArray;
#[cfg(feature = "rtti")]
use crate::Signal;

use auto_enums::auto_enum;
use cgmath::Matrix4;
use const_field_offset::FieldOffsets;
use core::pin::Pin;
use sixtyfps_corelib_macros::*;
use std::cell::RefCell;
use std::rc::Rc;

/// 2D Rectangle
pub type Rect = euclid::default::Rect<f32>;
/// 2D Point
pub type Point = euclid::default::Point2D<f32>;
/// 2D Size
pub type Size = euclid::default::Size2D<f32>;

/// ARGBColor stores the red, green, blue and alpha components of a color
/// with the precision of the generic parameter T. For example if T is f32,
/// the values are normalized between 0 and 1. If T is u8, they values range
/// is 0 to 255.
/// This is merely a helper class for use with [`Color`].
#[derive(Copy, Clone, PartialEq, Debug, Default)]
pub struct ARGBColor<T> {
    /// The alpha component.
    pub alpha: T,
    /// The red channel.
    pub red: T,
    /// The green channel.
    pub green: T,
    /// The blue channel.
    pub blue: T,
}

/// Color represents a color in the SixtyFPS run-time, represented using 8-bit channels for
/// red, green, blue and the alpha (opacity).
/// It can be conveniently constructed and destructured using the to_ and from_ (a)rgb helper functions:
/// ```
/// # fn do_something_with_red_and_green(_:f32, _:f32) {}
/// # fn do_something_with_red(_:u8) {}
/// # use sixtyfps_corelib::graphics::{Color, ARGBColor};
/// # let some_color = Color::from_rgb_u8(0, 0, 0);
/// let col = some_color.to_argb_f32();
/// do_something_with_red_and_green(col.red, col.green);
///
/// let ARGBColor { red, blue, green, .. } = some_color.to_argb_u8();
/// do_something_with_red(red);
///
/// let new_col = Color::from(ARGBColor{ red: 0.5, green: 0.65, blue: 0.32, alpha: 1.});
/// ```
#[derive(Copy, Clone, PartialEq, Debug, Default)]
#[repr(C)]
pub struct Color {
    red: u8,
    green: u8,
    blue: u8,
    alpha: u8,
}

impl From<ARGBColor<u8>> for Color {
    fn from(col: ARGBColor<u8>) -> Self {
        Self { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
    }
}

impl From<Color> for ARGBColor<u8> {
    fn from(col: Color) -> Self {
        ARGBColor { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
    }
}

impl From<ARGBColor<u8>> for ARGBColor<f32> {
    fn from(col: ARGBColor<u8>) -> Self {
        Self {
            red: (col.red as f32) / 255.0,
            green: (col.green as f32) / 255.0,
            blue: (col.blue as f32) / 255.0,
            alpha: (col.alpha as f32) / 255.0,
        }
    }
}

impl From<Color> for ARGBColor<f32> {
    fn from(col: Color) -> Self {
        let u8col: ARGBColor<u8> = col.into();
        u8col.into()
    }
}

impl From<ARGBColor<f32>> for Color {
    fn from(col: ARGBColor<f32>) -> Self {
        Self {
            red: (col.red * 255.) as u8,
            green: (col.green * 255.) as u8,
            blue: (col.blue * 255.) as u8,
            alpha: (col.alpha * 255.) as u8,
        }
    }
}

impl Color {
    /// Construct a color from an integer encoded as `0xAARRGGBB`
    pub const fn from_argb_encoded(encoded: u32) -> Color {
        Self {
            red: (encoded >> 16) as u8,
            green: (encoded >> 8) as u8,
            blue: encoded as u8,
            alpha: (encoded >> 24) as u8,
        }
    }

    /// Returns `(alpha, red, green, blue)` encoded as u32
    pub fn as_argb_encoded(&self) -> u32 {
        ((self.red as u32) << 16)
            | ((self.green as u32) << 8)
            | (self.blue as u32)
            | ((self.alpha as u32) << 24)
    }

    /// Construct a color from the alpha, red, green and blue color channel parameters.
    pub fn from_argb_u8(alpha: u8, red: u8, green: u8, blue: u8) -> Self {
        Self { red, green, blue, alpha }
    }

    /// Construct a color from the red, green and blue color channel parameters. The alpha
    /// channel will have the value 255.
    pub fn from_rgb_u8(red: u8, green: u8, blue: u8) -> Self {
        Self::from_argb_u8(255, red, green, blue)
    }

    /// Construct a color from the alpha, red, green and blue color channel parameters.
    pub fn from_argb_f32(alpha: f32, red: f32, green: f32, blue: f32) -> Self {
        ARGBColor { alpha, red, green, blue }.into()
    }

    /// Construct a color from the red, green and blue color channel parameters. The alpha
    /// channel will have the value 255.
    pub fn from_rgb_f32(red: f32, green: f32, blue: f32) -> Self {
        Self::from_argb_f32(1.0, red, green, blue)
    }

    /// Converts this color to an ARGBColor struct for easy destructuring.
    pub fn to_argb_u8(&self) -> ARGBColor<u8> {
        ARGBColor::from(*self)
    }

    /// Converts this color to an ARGBColor struct for easy destructuring.
    pub fn to_argb_f32(&self) -> ARGBColor<f32> {
        ARGBColor::from(*self)
    }

    /// Returns the red channel of the color as u8 in the range 0..255.
    pub fn red(self) -> u8 {
        self.red
    }

    /// Returns the green channel of the color as u8 in the range 0..255.
    pub fn green(self) -> u8 {
        self.green
    }

    /// Returns the blue channel of the color as u8 in the range 0..255.
    pub fn blue(self) -> u8 {
        self.blue
    }

    /// Returns the alpha channel of the color as u8 in the range 0..255.
    pub fn alpha(self) -> u8 {
        self.alpha
    }
}

impl InterpolatedPropertyValue for Color {
    fn interpolate(self, target_value: Self, t: f32) -> Self {
        Self {
            red: self.red.interpolate(target_value.red, t),
            green: self.green.interpolate(target_value.green, t),
            blue: self.blue.interpolate(target_value.blue, t),
            alpha: self.alpha.interpolate(target_value.alpha, t),
        }
    }
}

impl std::fmt::Display for Color {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "argb({}, {}, {}, {})", self.alpha, self.red, self.green, self.blue)
    }
}

/// A resource is a reference to binary data, for example images. They can be accessible on the file
/// system or embedded in the resulting binary. Or they might be URLs to a web server and a downloaded
/// is necessary before they can be used.
#[derive(Clone, PartialEq, Debug)]
#[repr(u8)]
pub enum Resource {
    /// A resource that does not represent any data.
    None,
    /// A resource that points to a file in the file system
    AbsoluteFilePath(crate::SharedString),
    /// A resource that is embedded in the program and accessible via pointer
    /// The format is the same as in a file
    EmbeddedData(super::slice::Slice<'static, u8>),
    /// Raw ARGB
    #[allow(missing_docs)]
    EmbeddedRgbaImage { width: u32, height: u32, data: super::sharedarray::SharedArray<u32> },
}

impl Default for Resource {
    fn default() -> Self {
        Resource::None
    }
}

/// The run-time library uses this enum to instruct the [GraphicsBackend] to render SixtyFPS
/// graphics items.
/// The different variants of this enum closely resemble the properties found in the `.60`
/// mark-up language for various items. More specifically this enum typically holds the
/// properties that usually require for the allocation and uploading of GPU side data, such
/// as vertex buffers or textures. Other properties such as colors not part of the enum but
/// are provided to the back-end using [RenderingVariable]. That means that certain variants
/// of this enum relate to a sequence of rendering variables.
///
/// Always absent here are the starting coordinates for the primitives. Those are provided
/// using a translation in the transform parameter of [Frame::render_primitive].
#[derive(PartialEq, Debug)]
#[repr(C)]
#[allow(missing_docs)]
pub enum HighLevelRenderingPrimitive {
    /// There is nothing to draw.
    ///
    /// Associated rendering variables: None.
    NoContents,
    /// Renders a rectangle with the specified `width` and `height`, as well as a border
    /// around it. The `border_width` specifies the width to use for the border, and the
    /// `border_radius` can be used to render a rounded rectangle.
    ///
    /// Expected rendering variables:
    /// * [`RenderingVariable::Color`]: The color to fill the rectangle with.
    /// * [`RenderingVariable::Color`]: The color to use for stroking the border of the rectangle.
    Rectangle { width: f32, height: f32, border_width: f32, border_radius: f32 },
    /// Renders a image referenced by the specified `source`.
    ///
    /// Optional rendering variables:
    /// * [`RenderingVariable::ScaledWidth`]: The image will be scaled to the specified width.
    /// * [`RenderingVariable::ScaledHeight`]: The image will be scaled to the specified height.
    Image { source: crate::Resource },
    /// Renders the specified `text` with a font that matches the specified family (`font_family`) and the given
    /// pixel size (`font_size`).
    ///
    /// Expected rendering variables:
    /// * [`RenderingVariable::Color`]: The color to use for rendering the glyphs.
    /// * [`RenderingVariable::TextCursor`]: Draw a text cursor.
    Text { text: crate::SharedString, font_family: crate::SharedString, font_size: f32 },
    /// Renders a path specified by the `elements` parameter. The path will be scaled to fit into the given
    /// `width` and `height`. If the `stroke_width` is greater than zero, then path will also be outlined.
    ///
    /// Expected rendering variables:
    /// * [`RenderingVariable::Color`]: The color to use for filling the path.
    /// * [`RenderingVariable::Color`]: The color to use for the path outline, if a non-zero `stroke_width`
    ///   was specified.
    Path { width: f32, height: f32, elements: crate::PathData, stroke_width: f32 },
    /// Applies a clip rectangle for all subsequent rendering, with the given `width` and `height. When rendering
    /// the low-level rendering primitive created from this variant, [`Frame::render_primitive`] will return a
    /// vector with cleanup primitives that must be applied in order to unapply the clipping.
    ClipRect { width: f32, height: f32 },
}

impl Default for HighLevelRenderingPrimitive {
    fn default() -> Self {
        Self::NoContents
    }
}

#[derive(Debug, Clone)]
#[repr(C)]
/// This enum is used to affect various aspects of the rendering of [GraphicsBackend::LowLevelRenderingPrimitive]
/// without the need to re-create them. See the documentation of [HighLevelRenderingPrimitive]
/// about which variables are supported in which order.
pub enum RenderingVariable {
    /// Translates the primitive by the given (x, y) vector.
    Translate(f32, f32),
    /// Apply the specified color. Depending on the order in the rendering variables array this may apply to different
    /// aspects of the primitive, such as the fill or stroke.
    Color(Color),
    /// Scale the primitive by the specified width.
    ScaledWidth(f32),
    /// Scale the primitive by the specified height.
    ScaledHeight(f32),
    /// Draw a text cursor. The parameters provide the x coordiante and the width/height as (x, width, height) tuple.
    TextCursor(f32, f32, f32),
    /// Draw a text selection. The parameters provide the starting x coordinate, the width and the height. This variable
    /// must be followed by two colors, foreground and background.
    TextSelection(f32, f32, f32),
}

impl RenderingVariable {
    /// Returns the color of this variable, or panics if the enum holds a different variant.
    pub fn as_color(&self) -> &Color {
        match self {
            RenderingVariable::Color(c) => c,
            _ => panic!("internal error: expected color but found something else"),
        }
    }
    /// Returns the scaled width of this variable, or panics if the enum holds a different variant.
    pub fn as_scaled_width(&self) -> f32 {
        match self {
            RenderingVariable::ScaledWidth(w) => *w,
            _ => panic!("internal error: expected scaled width but found something else"),
        }
    }
    /// Returns the scaled height of this variable, or panics if the enum holds a different variant.
    pub fn as_scaled_height(&self) -> f32 {
        match self {
            RenderingVariable::ScaledHeight(h) => *h,
            _ => panic!("internal error: expected scaled height but found something else"),
        }
    }
}

/// Frame is used to render previously created [GraphicsBackend::LowLevelRenderingPrimitive] instances
/// to the back-buffer of the window.
pub trait Frame {
    /// This associated type is usually provided through the [GraphicsBackend::LowLevelRenderingPrimitive] type.
    type LowLevelRenderingPrimitive;
    /// Renderings the provided primitive to the back-buffer, taking the provided transform and additional rendering
    /// variables into account.
    ///
    /// The returned primitives must be rendered after rendering any rendering primitives that are supposed to be
    /// in a visual tree after this primitive. This is for example used to clean up clipping regions.
    ///
    /// Arguments:
    /// * `primitive`: The primitive to render.
    /// * `transform`: The geometry of the primitive will be transformed by this 4x4 matrix. This can be used to apply
    ///                rotation, scaling, etc. without re-creating the low-level rendering primitive.
    /// * `variables`: An array of [RenderingVariable] instances that are applied when rendering the primitive. These
    ///                variables typically translate to OpenGL uniforms and allow for affecting various aspects of the
    ///                rendering of the primitive without expensive buffer uploads to the GPU.
    fn render_primitive(
        &mut self,
        primitive: &Self::LowLevelRenderingPrimitive,
        transform: &Matrix4<f32>,
        variables: SharedArray<RenderingVariable>,
    ) -> Vec<Self::LowLevelRenderingPrimitive>;
}

/// RenderingPrimitivesBuilder is used to convert instances of [HighLevelRenderingPrimitive] to
/// the back-end specific [GraphicsBackend::LowLevelRenderingPrimitive], giving the backend a way
/// to determin the optimal representation for rendering later. For example this may involve uploading
/// textures for images to GPU memory, pre-rendering glyphs or allocating vertex buffers.
pub trait RenderingPrimitivesBuilder {
    /// This associated type is usually provided through the [GraphicsBackend::LowLevelRenderingPrimitive] type.
    type LowLevelRenderingPrimitive;

    /// Lowers the high-level rendering primitive to a representation suitable for the graphics backend.
    ///
    /// Arguments:
    /// * `primitive`: The primitive to convert.
    fn create(
        &mut self,
        primitive: HighLevelRenderingPrimitive,
    ) -> Self::LowLevelRenderingPrimitive;
}

/// GraphicsBackend is the trait that the the SixtyFPS run-time uses to convert [HighLevelRenderingPrimitive]
/// to an internal representation that is optimal for the backend, in order to render it later. The internal
/// representation is opaque but must be provided via the [GraphicsBackend::LowLevelRenderingPrimitive] associated type.
///
/// The backend operates in two modes:
///   1. It can be used to create new rendering primitives, by calling [GraphicsBackend::new_rendering_primitives_builder]. This is
///      usually an expensive step, that involves uploading data to the GPU or performing other pre-calculations.
///
///   1. A series of low-level rendering primitives can be rendered into a frame, that's started using [GraphicsBackend::new_frame].
///      The low-level rendering primitives are intended to be fast and ready for rendering.
pub trait GraphicsBackend: Sized {
    /// This associated type is typically opaque and is produced by the [RenderingPrimitivesBuilder]. For example it may contain
    /// handles that refer to data that was uploaded to the GPU.
    type LowLevelRenderingPrimitive;
    /// This associated type ties the Frame trait together with this trait's LowLevelRenderingPrimitive.
    type Frame: Frame<LowLevelRenderingPrimitive = Self::LowLevelRenderingPrimitive>;
    /// This associated type ties the RenderingPrimitivesBuilder trait with this trait's LowLevelRenderingPrimitive.
    type RenderingPrimitivesBuilder: RenderingPrimitivesBuilder<
        LowLevelRenderingPrimitive = Self::LowLevelRenderingPrimitive,
    >;

    /// Creates a new RenderingPrimitivesBuilder for the allocation of any GPU side data of different primitives. Call
    /// [GraphicsBackend::finish_primitives] when done.
    fn new_rendering_primitives_builder(&mut self) -> Self::RenderingPrimitivesBuilder;
    /// When all low-level rendering primitives have been created needed to render your scene, then this method
    /// needs to be called to complete the process.
    ///
    /// Arguments:
    /// * `builder`: The [RenderingPrimitivesBuilder] created by calling [GraphicsBackend::new_rendering_primitives_builder].
    fn finish_primitives(&mut self, builder: Self::RenderingPrimitivesBuilder);

    /// Begins the process of rendering a new frame into what is typically the window back-buffer. Call [GraphicsBackend::present_frame]
    /// when all rendering primitives have been queued for rendering.
    ///
    /// Arguments:
    /// * `width`: The width of the window to render.
    /// * `height`: The height of the window to render.
    /// * `clear_color`: The color to clear the back-buffer with.
    fn new_frame(&mut self, width: u32, height: u32, clear_color: &Color) -> Self::Frame;
    /// When all rendering primitives have been queued for rendering with the [Frame] API, pass the frame instance to this function
    /// and thereby complete the rendering. The backend then will present the contents on the screen inside the window, for example by
    /// flushing the backing store or swapping OpenGL buffers.
    ///
    /// Arguments:
    /// * `frame`: The frame created by calling [GraphicsBackend::new_frame].
    fn present_frame(&mut self, frame: Self::Frame);

    /// Returns the window that the backend is associated with.
    fn window(&self) -> &winit::window::Window;
}

/// Holds a GraphicBackend's rendering primitive as well as a PropertyTracker that allows lazily re-creating
/// the primitive if the properties needed to create it have changed.
pub struct TrackingRenderingPrimitive<Backend: GraphicsBackend> {
    /// The rendering primitive that's being tracked.
    pub primitive: Backend::LowLevelRenderingPrimitive,
    /// The property tracker that should be used to evaluate whether the primitive needs to be re-created
    /// or not.
    pub dependency_tracker: core::pin::Pin<Box<crate::properties::PropertyTracker>>,
}

impl<Backend: GraphicsBackend> TrackingRenderingPrimitive<Backend> {
    /// Creates a new TrackingRenderingPrimitive by evaluating the provided update_fn once, storing the returned
    /// rendering primitive and initializing the dependency tracker.
    pub fn new(update_fn: impl FnOnce() -> Backend::LowLevelRenderingPrimitive) -> Self {
        let dependency_tracker = Box::pin(crate::properties::PropertyTracker::default());
        let primitive = dependency_tracker.as_ref().evaluate(update_fn);
        Self { primitive, dependency_tracker }
    }
}

/// The RenderingCache is used by the run-time library to avoid storing the
/// typed [GraphicsBackend::LowLevelRenderingPrimitive] instances created for
/// [Items][`crate::items`]. Instead it allows mapping them to a usize
/// handle, and it also allows tracking whenever any of the properties used to
/// create the primitive changed.
pub type RenderingCache<Backend> = vec_arena::Arena<TrackingRenderingPrimitive<Backend>>;

type WindowFactoryFn<Backend> =
    dyn Fn(&crate::eventloop::EventLoop, winit::window::WindowBuilder) -> Backend;

struct MappedWindow<Backend: GraphicsBackend + 'static> {
    backend: RefCell<Backend>,
    rendering_cache: RefCell<RenderingCache<Backend>>,
}

enum GraphicsWindowBackendState<Backend: GraphicsBackend + 'static> {
    Unmapped,
    Mapped(MappedWindow<Backend>),
}

impl<Backend: GraphicsBackend + 'static> GraphicsWindowBackendState<Backend> {
    fn as_mapped(&self) -> &MappedWindow<Backend> {
        match self {
            GraphicsWindowBackendState::Unmapped => panic!(
                "internal error: tried to access window functions that require a mapped window"
            ),
            GraphicsWindowBackendState::Mapped(mw) => &mw,
        }
    }
}

#[derive(FieldOffsets)]
#[repr(C)]
#[pin]
struct WindowProperties {
    scale_factor: Property<f32>,
    width: Property<f32>,
    height: Property<f32>,
}

impl Default for WindowProperties {
    fn default() -> Self {
        Self {
            scale_factor: Property::new(1.0),
            width: Property::new(800.),
            height: Property::new(600.),
        }
    }
}

/// GraphicsWindow is an implementation of the [GenericWindow][`crate::eventloop::GenericWindow`] trait. This is
/// typically instantiated by entry factory functions of the different graphics backends.
pub struct GraphicsWindow<Backend: GraphicsBackend + 'static> {
    window_factory: Box<WindowFactoryFn<Backend>>,
    map_state: RefCell<GraphicsWindowBackendState<Backend>>,
    properties: Pin<Box<WindowProperties>>,
    cursor_blinker: std::cell::RefCell<pin_weak::rc::PinWeak<TextCursorBlinker>>,
    keyboard_modifiers: std::cell::Cell<KeyboardModifiers>,
}

impl<Backend: GraphicsBackend + 'static> GraphicsWindow<Backend> {
    /// Creates a new reference-counted instance.
    ///
    /// Arguments:
    /// * `graphics_backend_factory`: The factor function stored in the GraphicsWindow that's called when the state
    ///   of the window changes to mapped. The event loop and window builder parameters can be used to create a
    ///   backing window.
    pub fn new(
        graphics_backend_factory: impl Fn(&crate::eventloop::EventLoop, winit::window::WindowBuilder) -> Backend
            + 'static,
    ) -> Rc<Self> {
        Rc::new(Self {
            window_factory: Box::new(graphics_backend_factory),
            map_state: RefCell::new(GraphicsWindowBackendState::Unmapped),
            properties: Box::pin(WindowProperties::default()),
            cursor_blinker: Default::default(),
            keyboard_modifiers: Default::default(),
        })
    }

    /// Returns the window id of the window if it is mapped, None otherwise.
    pub fn id(&self) -> Option<winit::window::WindowId> {
        Some(self.map_state.borrow().as_mapped().backend.borrow().window().id())
    }
}

impl<Backend: GraphicsBackend> Drop for GraphicsWindow<Backend> {
    fn drop(&mut self) {
        match &*self.map_state.borrow() {
            GraphicsWindowBackendState::Unmapped => {}
            GraphicsWindowBackendState::Mapped(mw) => {
                crate::eventloop::unregister_window(mw.backend.borrow().window().id());
            }
        }
        if let Some(existing_blinker) = self.cursor_blinker.borrow().upgrade() {
            existing_blinker.stop();
        }
    }
}

impl<Backend: GraphicsBackend> crate::eventloop::GenericWindow for GraphicsWindow<Backend> {
    fn draw(self: Rc<Self>, component: crate::component::ComponentRefPin) {
        {
            let map_state = self.map_state.borrow();
            let window = map_state.as_mapped();
            let mut backend = window.backend.borrow_mut();
            let mut rendering_primitives_builder = backend.new_rendering_primitives_builder();

            // Generate cached rendering data once
            crate::item_tree::visit_items(
                component,
                crate::item_tree::TraversalOrder::BackToFront,
                |_, item, _| {
                    crate::item_rendering::update_item_rendering_data(
                        item,
                        &window.rendering_cache,
                        &mut rendering_primitives_builder,
                        &self,
                    );
                    crate::item_tree::ItemVisitorResult::Continue(())
                },
                (),
            );

            backend.finish_primitives(rendering_primitives_builder);
        }

        let map_state = self.map_state.borrow();
        let window = map_state.as_mapped();
        let mut backend = window.backend.borrow_mut();
        let size = backend.window().inner_size();
        let mut frame = backend.new_frame(
            size.width,
            size.height,
            &ARGBColor { red: 255 as u8, green: 255, blue: 255, alpha: 255 }.into(),
        );
        crate::item_rendering::render_component_items(
            component,
            &mut frame,
            &window.rendering_cache,
            &self,
        );
        backend.present_frame(frame);
    }

    fn process_mouse_input(
        self: Rc<Self>,
        pos: winit::dpi::PhysicalPosition<f64>,
        what: MouseEventType,
        component: crate::component::ComponentRefPin,
    ) {
        component.as_ref().input_event(
            MouseEvent { pos: euclid::point2(pos.x as _, pos.y as _), what },
            &crate::eventloop::ComponentWindow::new(self.clone()),
            &component,
        );
    }

    fn process_key_input(
        self: Rc<Self>,
        event: &KeyEvent,
        component: core::pin::Pin<crate::component::ComponentRef>,
    ) {
        component.as_ref().key_event(event, &crate::eventloop::ComponentWindow::new(self.clone()));
    }

    fn with_platform_window(&self, callback: &dyn Fn(&winit::window::Window)) {
        let map_state = self.map_state.borrow();
        let window = map_state.as_mapped();
        let backend = window.backend.borrow();
        let handle = backend.window();
        callback(handle);
    }

    fn map_window(
        self: Rc<Self>,
        event_loop: &crate::eventloop::EventLoop,
        root_item: Pin<ItemRef>,
    ) {
        if matches!(&*self.map_state.borrow(), GraphicsWindowBackendState::Mapped(..)) {
            return;
        }

        let id = {
            let window_builder = winit::window::WindowBuilder::new();

            let backend = self.window_factory.as_ref()(&event_loop, window_builder);

            let platform_window = backend.window();

            if std::env::var("SIXTYFPS_FULLSCREEN").is_ok() {
                platform_window.set_fullscreen(Some(winit::window::Fullscreen::Borderless(None)));
            }

            let window_id = platform_window.id();

            // Ideally we should be passing the initial requested size to the window builder, but those properties
            // may be specified in logical pixels, relative to the scale factory, which we only know *after* mapping
            // the window to the screen. So we first map the window then, propagate the scale factory and *then* the
            // width/height properties should have the correct values calculated via their bindings that multiply with
            // the scale factor.
            // We could pass the logical requested size at window builder time, *if* we knew what the values are.
            {
                self.properties.as_ref().scale_factor.set(platform_window.scale_factor() as _);
                let existing_size = platform_window.inner_size();

                let mut new_size = existing_size;

                if let Some(window_item) = ItemRef::downcast_pin(root_item) {
                    let width =
                        crate::items::Window::FIELD_OFFSETS.width.apply_pin(window_item).get();
                    if width > 0. {
                        new_size.width = width as _;
                    }
                    let height =
                        crate::items::Window::FIELD_OFFSETS.height.apply_pin(window_item).get();
                    if height > 0. {
                        new_size.height = height as _;
                    }

                    {
                        let window = self.clone();
                        window_item.as_ref().width.set_binding(move || {
                            WindowProperties::FIELD_OFFSETS
                                .width
                                .apply_pin(window.properties.as_ref())
                                .get()
                        });
                    }
                    {
                        let window = self.clone();
                        window_item.as_ref().height.set_binding(move || {
                            WindowProperties::FIELD_OFFSETS
                                .height
                                .apply_pin(window.properties.as_ref())
                                .get()
                        });
                    }
                }

                if new_size != existing_size {
                    platform_window.set_inner_size(new_size)
                }

                self.properties.as_ref().width.set(new_size.width as _);
                self.properties.as_ref().height.set(new_size.height as _);
            }

            self.map_state.replace(GraphicsWindowBackendState::Mapped(MappedWindow {
                backend: RefCell::new(backend),
                rendering_cache: Default::default(),
            }));

            window_id
        };

        crate::eventloop::register_window(
            id,
            self.clone() as Rc<dyn crate::eventloop::GenericWindow>,
        );
    }

    fn request_redraw(&self) {
        match &*self.map_state.borrow() {
            GraphicsWindowBackendState::Unmapped => {}
            GraphicsWindowBackendState::Mapped(window) => {
                window.backend.borrow().window().request_redraw()
            }
        }
    }

    fn unmap_window(self: Rc<Self>) {
        self.map_state.replace(GraphicsWindowBackendState::Unmapped);
        if let Some(existing_blinker) = self.cursor_blinker.borrow().upgrade() {
            existing_blinker.stop();
        }
    }

    fn scale_factor(&self) -> f32 {
        WindowProperties::FIELD_OFFSETS.scale_factor.apply_pin(self.properties.as_ref()).get()
    }

    fn set_scale_factor(&self, factor: f32) {
        self.properties.as_ref().scale_factor.set(factor);
    }

    fn set_width(&self, width: f32) {
        self.properties.as_ref().width.set(width);
    }

    fn set_height(&self, height: f32) {
        self.properties.as_ref().height.set(height);
    }

    fn free_graphics_resources(
        self: Rc<Self>,
        component: core::pin::Pin<crate::component::ComponentRef>,
    ) {
        match &*self.map_state.borrow() {
            GraphicsWindowBackendState::Unmapped => {}
            GraphicsWindowBackendState::Mapped(window) => {
                crate::item_rendering::free_item_rendering_data(component, &window.rendering_cache)
            }
        }
    }

    fn set_cursor_blink_binding(&self, prop: &crate::properties::Property<bool>) {
        let existing_blinker = self.cursor_blinker.borrow().clone();

        let blinker = existing_blinker.upgrade().unwrap_or_else(|| {
            let new_blinker = TextCursorBlinker::new();
            *self.cursor_blinker.borrow_mut() =
                pin_weak::rc::PinWeak::downgrade(new_blinker.clone());
            new_blinker
        });

        TextCursorBlinker::set_binding(blinker, prop);
    }

    /// Returns the currently active keyboard notifiers.
    fn current_keyboard_modifiers(&self) -> KeyboardModifiers {
        self.keyboard_modifiers.get()
    }
    /// Sets the currently active keyboard notifiers. This is used only for testing or directly
    /// from the event loop implementation.
    fn set_current_keyboard_modifiers(&self, state: KeyboardModifiers) {
        self.keyboard_modifiers.set(state)
    }

    fn set_focus_item(
        self: Rc<Self>,
        component: core::pin::Pin<crate::component::ComponentRef>,
        item_ptr: *const u8,
    ) {
        let window = crate::eventloop::ComponentWindow::new(self.clone());
        component.as_ref().focus_event(&crate::input::FocusEvent::FocusOut, &window);
        component.as_ref().focus_event(&crate::input::FocusEvent::FocusIn(item_ptr), &window);
    }

    fn set_focus(
        self: Rc<Self>,
        component: core::pin::Pin<crate::component::ComponentRef>,
        have_focus: bool,
    ) {
        let window = crate::eventloop::ComponentWindow::new(self.clone());
        let event = if have_focus {
            crate::input::FocusEvent::WindowReceivedFocus
        } else {
            crate::input::FocusEvent::WindowLostFocus
        };
        component.as_ref().focus_event(&event, &window);
    }
}

#[repr(C)]
#[derive(FieldOffsets, Default, BuiltinItem, Clone, Debug, PartialEq)]
#[pin]
/// PathLineTo describes the event of moving the cursor on the path to the specified location
/// along a straight line.
pub struct PathLineTo {
    #[rtti_field]
    /// The x coordinate where the line should go to.
    pub x: f32,
    #[rtti_field]
    /// The y coordinate where the line should go to.
    pub y: f32,
}

#[repr(C)]
#[derive(FieldOffsets, Default, BuiltinItem, Clone, Debug, PartialEq)]
#[pin]
/// PathArcTo describes the event of moving the cursor on the path across an arc to the specified
/// x/y coordinates, with the specified x/y radius and additional properties.
pub struct PathArcTo {
    #[rtti_field]
    /// The x coordinate where the arc should end up.
    pub x: f32,
    #[rtti_field]
    /// The y coordinate where the arc should end up.
    pub y: f32,
    #[rtti_field]
    /// The radius on the x-axis of the arc.
    pub radius_x: f32,
    #[rtti_field]
    /// The radius on the y-axis of the arc.
    pub radius_y: f32,
    #[rtti_field]
    /// The rotation along the x-axis of the arc in degress.
    pub x_rotation: f32,
    #[rtti_field]
    /// large_arc indicates whether to take the long or the shorter path to complete the arc.
    pub large_arc: bool,
    #[rtti_field]
    /// sweep indicates the direction of the arc. If true, a clockwise direction is chosen,
    /// otherwise counter-clockwise.
    pub sweep: bool,
}

#[repr(C)]
#[derive(Clone, Debug, PartialEq)]
/// PathElement describes a single element on a path, such as move-to, line-to, etc.
pub enum PathElement {
    /// The LineTo variant describes a line.
    LineTo(PathLineTo),
    /// The PathArcTo variant describes an arc.
    ArcTo(PathArcTo),
    /// Indicates that the path should be closed now by connecting to the starting point.
    Close,
}

#[repr(C)]
#[derive(Clone, Debug, PartialEq)]
/// PathEvent is a low-level data structure describing the composition of a path. Typically it is
/// generated at compile time from a higher-level description, such as SVG commands.
pub enum PathEvent {
    /// The beginning of the path.
    Begin,
    /// A straight line on the path.
    Line,
    /// A quadratic bezier curve on the path.
    Quadratic,
    /// A cubic bezier curve on the path.
    Cubic,
    /// The end of the path that remains open.
    EndOpen,
    /// The end of a path that is closed.
    EndClosed,
}

struct ToLyonPathEventIterator<'a> {
    events_it: std::slice::Iter<'a, PathEvent>,
    coordinates_it: std::slice::Iter<'a, Point>,
    first: Option<&'a Point>,
    last: Option<&'a Point>,
}

impl<'a> Iterator for ToLyonPathEventIterator<'a> {
    type Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>;
    fn next(&mut self) -> Option<Self::Item> {
        use lyon::path::Event;

        self.events_it.next().map(|event| match event {
            PathEvent::Begin => Event::Begin { at: self.coordinates_it.next().unwrap().clone() },
            PathEvent::Line => Event::Line {
                from: self.coordinates_it.next().unwrap().clone(),
                to: self.coordinates_it.next().unwrap().clone(),
            },
            PathEvent::Quadratic => Event::Quadratic {
                from: self.coordinates_it.next().unwrap().clone(),
                ctrl: self.coordinates_it.next().unwrap().clone(),
                to: self.coordinates_it.next().unwrap().clone(),
            },
            PathEvent::Cubic => Event::Cubic {
                from: self.coordinates_it.next().unwrap().clone(),
                ctrl1: self.coordinates_it.next().unwrap().clone(),
                ctrl2: self.coordinates_it.next().unwrap().clone(),
                to: self.coordinates_it.next().unwrap().clone(),
            },
            PathEvent::EndOpen => Event::End {
                first: self.first.unwrap().clone(),
                last: self.last.unwrap().clone(),
                close: false,
            },
            PathEvent::EndClosed => Event::End {
                first: self.first.unwrap().clone(),
                last: self.last.unwrap().clone(),
                close: true,
            },
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.events_it.size_hint()
    }
}

impl<'a> ExactSizeIterator for ToLyonPathEventIterator<'a> {}

struct TransformedLyonPathIterator<EventIt> {
    it: EventIt,
    transform: lyon::math::Transform,
}

impl<EventIt: Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>>> Iterator
    for TransformedLyonPathIterator<EventIt>
{
    type Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>;
    fn next(&mut self) -> Option<Self::Item> {
        self.it.next().map(|ev| ev.transformed(&self.transform))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }
}

impl<EventIt: Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>>>
    ExactSizeIterator for TransformedLyonPathIterator<EventIt>
{
}

/// PathDataIterator is a data structure that acts as starting point for iterating
/// through the low-level events of a path. If the path was constructed from said
/// events, then it is a very thin abstraction. If the path was created from higher-level
/// elements, then an intermediate lyon path is required/built.
pub struct PathDataIterator<'a> {
    it: LyonPathIteratorVariant<'a>,
    transform: Option<lyon::math::Transform>,
}

enum LyonPathIteratorVariant<'a> {
    FromPath(lyon::path::Path),
    FromEvents(&'a crate::SharedArray<PathEvent>, &'a crate::SharedArray<Point>),
}

impl<'a> PathDataIterator<'a> {
    /// Create a new iterator for path traversal.
    #[auto_enum(Iterator)]
    pub fn iter(
        &'a self,
    ) -> impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a {
        match &self.it {
            LyonPathIteratorVariant::FromPath(path) => self.apply_transform(path.iter()),
            LyonPathIteratorVariant::FromEvents(events, coordinates) => {
                self.apply_transform(ToLyonPathEventIterator {
                    events_it: events.iter(),
                    coordinates_it: coordinates.iter(),
                    first: coordinates.first(),
                    last: coordinates.last(),
                })
            }
        }
    }

    fn fit(&mut self, width: f32, height: f32) {
        if width > 0. || height > 0. {
            let br = lyon::algorithms::aabb::bounding_rect(self.iter());
            self.transform = Some(lyon::algorithms::fit::fit_rectangle(
                &br,
                &Rect::from_size(Size::new(width, height)),
                lyon::algorithms::fit::FitStyle::Min,
            ));
        }
    }
    #[auto_enum(Iterator)]
    fn apply_transform(
        &'a self,
        event_it: impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a,
    ) -> impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a {
        match self.transform {
            Some(transform) => TransformedLyonPathIterator { it: event_it, transform },
            None => event_it,
        }
    }
}

#[repr(C)]
#[derive(Clone, Debug, PartialEq)]
/// PathData represents a path described by either high-level elements or low-level
/// events and coordinates.
pub enum PathData {
    /// None is the variant when the path is empty.
    None,
    /// The Elements variant is used to make a Path from shared arrays of elements.
    Elements(crate::SharedArray<PathElement>),
    /// The Events variant describes the path as a series of low-level events and
    /// associated coordinates.
    Events(crate::SharedArray<PathEvent>, crate::SharedArray<Point>),
}

impl Default for PathData {
    fn default() -> Self {
        Self::None
    }
}

impl PathData {
    /// This function returns an iterator that allows traversing the path by means of lyon events.
    pub fn iter(&self) -> PathDataIterator {
        PathDataIterator {
            it: match self {
                PathData::None => LyonPathIteratorVariant::FromPath(lyon::path::Path::new()),
                PathData::Elements(elements) => LyonPathIteratorVariant::FromPath(
                    PathData::build_path(elements.as_slice().iter()),
                ),
                PathData::Events(events, coordinates) => {
                    LyonPathIteratorVariant::FromEvents(events, coordinates)
                }
            },
            transform: None,
        }
    }

    /// This function returns an iterator that allows traversing the path by means of lyon events.
    pub fn iter_fitted(&self, width: f32, height: f32) -> PathDataIterator {
        let mut it = self.iter();
        it.fit(width, height);
        it
    }

    fn build_path(element_it: std::slice::Iter<PathElement>) -> lyon::path::Path {
        use lyon::geom::SvgArc;
        use lyon::math::{Angle, Point, Vector};
        use lyon::path::{
            builder::{Build, FlatPathBuilder, SvgBuilder},
            ArcFlags,
        };

        let mut path_builder = lyon::path::Path::builder().with_svg();
        for element in element_it {
            match element {
                PathElement::LineTo(PathLineTo { x, y }) => {
                    path_builder.line_to(Point::new(*x, *y))
                }
                PathElement::ArcTo(PathArcTo {
                    x,
                    y,
                    radius_x,
                    radius_y,
                    x_rotation,
                    large_arc,
                    sweep,
                }) => {
                    let radii = Vector::new(*radius_x, *radius_y);
                    let x_rotation = Angle::degrees(*x_rotation);
                    let flags = ArcFlags { large_arc: *large_arc, sweep: *sweep };
                    let to = Point::new(*x, *y);

                    let svg_arc = SvgArc {
                        from: path_builder.current_position(),
                        radii,
                        x_rotation,
                        flags,
                        to,
                    };

                    if svg_arc.is_straight_line() {
                        path_builder.line_to(to);
                    } else {
                        path_builder.arc_to(radii, x_rotation, flags, to)
                    }
                }
                PathElement::Close => path_builder.close(),
            }
        }

        path_builder.build()
    }
}

pub(crate) mod ffi {
    #![allow(unsafe_code)]

    use super::*;

    #[allow(non_camel_case_types)]
    type c_void = ();

    /// Expand Rect so that cbindgen can see it. ( is in fact euclid::default::Rect<f32>)
    #[cfg(cbindgen)]
    #[repr(C)]
    struct Rect {
        x: f32,
        y: f32,
        width: f32,
        height: f32,
    }

    /// Expand Point so that cbindgen can see it. ( is in fact euclid::default::PointD2<f32>)
    #[cfg(cbindgen)]
    #[repr(C)]
    struct Point {
        x: f32,
        y: f32,
    }

    #[no_mangle]
    /// This function is used for the low-level C++ interface to allocate the backing vector for a shared path element array.
    pub unsafe extern "C" fn sixtyfps_new_path_elements(
        out: *mut c_void,
        first_element: *const PathElement,
        count: usize,
    ) {
        let arr = crate::SharedArray::from(std::slice::from_raw_parts(first_element, count));
        core::ptr::write(out as *mut crate::SharedArray<PathElement>, arr.clone());
    }

    #[no_mangle]
    /// This function is used for the low-level C++ interface to allocate the backing vector for a shared path event array.
    pub unsafe extern "C" fn sixtyfps_new_path_events(
        out_events: *mut c_void,
        out_coordinates: *mut c_void,
        first_event: *const PathEvent,
        event_count: usize,
        first_coordinate: *const Point,
        coordinate_count: usize,
    ) {
        let events = crate::SharedArray::from(std::slice::from_raw_parts(first_event, event_count));
        core::ptr::write(out_events as *mut crate::SharedArray<PathEvent>, events.clone());
        let coordinates = crate::SharedArray::from(std::slice::from_raw_parts(
            first_coordinate,
            coordinate_count,
        ));
        core::ptr::write(out_coordinates as *mut crate::SharedArray<Point>, coordinates.clone());
    }
}

/// The TextCursorBlinker takes care of providing a toggled boolean property
/// that can be used to animate a blinking cursor. It's typically stored in the
/// Window using a Weak and set_binding() can be used to set up a binding on a given
/// property that'll keep it up-to-date. That binding keeps a strong reference to the
/// blinker. If the underlying item that uses it goes away, the binding goes away and
/// so does the blinker.
#[derive(FieldOffsets)]
#[repr(C)]
#[pin]
struct TextCursorBlinker {
    cursor_visible: Property<bool>,
    cursor_blink_timer: crate::timers::Timer,
}

impl TextCursorBlinker {
    fn new() -> Pin<Rc<Self>> {
        Rc::pin(Self {
            cursor_visible: Property::new(true),
            cursor_blink_timer: Default::default(),
        })
    }

    fn set_binding(instance: Pin<Rc<TextCursorBlinker>>, prop: &crate::properties::Property<bool>) {
        instance.as_ref().cursor_visible.set(true);
        // Re-start timer, in case.
        Self::start(&instance);
        prop.set_binding(move || {
            TextCursorBlinker::FIELD_OFFSETS.cursor_visible.apply_pin(instance.as_ref()).get()
        });
    }

    fn start(self: &Pin<Rc<Self>>) {
        if self.cursor_blink_timer.running() {
            self.cursor_blink_timer.restart();
        } else {
            let toggle_cursor = {
                let weak_blinker = pin_weak::rc::PinWeak::downgrade(self.clone());
                move || {
                    if let Some(blinker) = weak_blinker.upgrade() {
                        let visible = TextCursorBlinker::FIELD_OFFSETS
                            .cursor_visible
                            .apply_pin(blinker.as_ref())
                            .get();
                        blinker.cursor_visible.set(!visible);
                    }
                }
            };
            self.cursor_blink_timer.start(
                crate::timers::TimerMode::Repeated,
                std::time::Duration::from_millis(500),
                Box::new(toggle_cursor),
            );
        }
    }

    fn stop(&self) {
        self.cursor_blink_timer.stop()
    }
}