1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
pub mod agent;
pub mod experiment;
pub mod message;
use agent::*;
use log::debug;
use message::*;
use std::collections::HashMap;
/// DiscreteTime is a Simulation's internal representation of time.
pub type DiscreteTime = u64;
/// The current state of a Simulation.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum SimulationState {
/// The Simulation has only been constructed.
Constructed,
/// The Simulation is actively simulating.
Running,
/// The Simulation successfully reached the halt condition.
Completed,
/// The Simulation catastrophically crashed.
Failed,
}
/// A Simulation struct is responsible to hold all the state for a simulation
/// and coordinates the actions and interactions of the agents.
///
/// A Simulation has its own concept of time, which is implemented as discrete
/// ticks of the u64 field `time`. Every tick is modeled as an instantaneous
/// point in time at which interactions can occur. The Simulation engine uses a
/// concept of `Messages` to communicate between agents. Agents can receive
/// messages and send messages to other Agents.
#[derive(Clone, Debug)]
pub struct Simulation {
/// The agents within the simulation, e.g. adaptive agents.
/// See here: https://authors.library.caltech.edu/60491/1/MGM%20113.pdf
pub agents: Vec<Agent>,
/// A halt check function: given the state of the Simulation determine halt or not.
pub halt_check: fn(&Simulation) -> bool,
/// The current discrete time of the Simulation.
pub time: DiscreteTime,
/// Whether to record metrics on queue depths. Takes space.
pub enable_queue_depth_metrics: bool,
/// Space to store queue depth metrics. Maps from Agent to a Vec<Time, Depth>
pub queue_depth_metrics: HashMap<String, Vec<usize>>,
/// The state of the Simulation.
pub state: SimulationState,
}
/// The parameters to create a Simulation.
#[derive(Clone, Debug)]
pub struct SimulationParameters {
/// The agents within the simulation, e.g. adaptive agents.
/// See here: https://authors.library.caltech.edu/60491/1/MGM%20113.pdf
pub agents: Vec<Agent>,
/// Given the state of the Simulation a function that determines if the Simulation is complete.
pub halt_check: fn(&Simulation) -> bool,
/// The discrete time at which the simulation should begin.
/// For the vast majority of simulations, 0 is the correct default.
pub starting_time: DiscreteTime,
/// Whether to record metrics on queue depths at every tick of the simulation.
/// Takes time and space.
pub enable_queue_depth_telemetry: bool,
}
impl Default for SimulationParameters {
fn default() -> Self {
SimulationParameters {
agents: vec![],
halt_check: |_| true,
starting_time: 0,
enable_queue_depth_telemetry: false,
}
}
}
impl Simulation {
pub fn new(parameters: SimulationParameters) -> Simulation {
Simulation {
state: SimulationState::Constructed,
queue_depth_metrics: parameters
.agents
.iter()
.map(|a| (a.name.to_owned(), vec![]))
.collect(),
agents: parameters.agents,
halt_check: parameters.halt_check,
time: parameters.starting_time,
enable_queue_depth_metrics: parameters.enable_queue_depth_telemetry,
}
}
/// Finds an agent in the simulation and return a copy.
pub fn find_agent(&self, name: &str) -> Option<Agent> {
self.agents.iter().find(|a| a.name == name).cloned()
}
/// Returns the consumed messages for a given Agent during the Simulation.
pub fn consumed_for_agent(&self, name: &str) -> Option<Vec<Message>> {
let agent = self.agents.iter().find(|a| a.name == name)?;
Some(agent.consumed.clone())
}
/// Returns the produced messages for a given Agent during the Simulation.
pub fn produced_for_agent(&self, name: &str) -> Option<Vec<Message>> {
let agent = self.agents.iter().find(|a| a.name == name)?;
Some(agent.produced.clone())
}
/// Returns the queue depth timeseries for a given Agent during the Simulation.
pub fn queue_depth_metrics(&self, agent_name: &str) -> Option<Vec<usize>> {
self.queue_depth_metrics.get(agent_name).cloned()
}
/// Runs the simulation. This should only be called after adding all the beginning state.
pub fn run(&mut self) {
self.state = SimulationState::Running;
while !(self.halt_check)(self) {
debug!("Running next tick of simulation at time {}", self.time);
let mut message_bus = vec![];
self.wakeup_agents_scheduled_to_wakeup_now();
for agent in self.agents.iter_mut() {
if self.enable_queue_depth_metrics {
self.queue_depth_metrics
.get_mut(&agent.name)
.expect("Failed to find agent in metrics")
.push(agent.queue.len());
}
match agent.state {
AgentState::Active => match (agent.consumption_fn)(agent, self.time) {
Some(messages) => {
message_bus.extend(messages);
}
None => debug!("No messages produced."),
},
AgentState::Dead | AgentState::AsleepUntil(_) => {}
}
}
// Consume all the new messages in the bus and deliver to agents.
self.disperse_bus_messages_to_agents(message_bus);
debug!("Finished this tick; incrementing time.");
self.time += 1;
}
self.state = SimulationState::Completed;
self.emit_completed_simulation_debug_logging();
}
/// A helper to calculate the average waiting time to process items.
/// Note: This function will likely go away; it is an artifact of prototyping.
pub fn calc_avg_wait_statistics(&self) -> HashMap<String, usize> {
let mut data = HashMap::new();
for agent in self.agents.iter().filter(|a| !a.consumed.is_empty()) {
let mut sum_of_times: u64 = 0;
for completed in agent.consumed.iter() {
sum_of_times += completed.completed_time.unwrap() - completed.queued_time;
}
data.insert(
agent.name.clone(),
sum_of_times as usize / agent.consumed.len(),
);
}
data
}
/// Calculates the statistics of queue lengths.
/// Mostly useful for checking which agents still have queues of work after halting.
pub fn calc_queue_len_statistics(&self) -> HashMap<String, usize> {
let mut data = HashMap::new();
for agent in self.agents.iter() {
data.insert(agent.name.clone(), agent.queue.len());
}
data
}
/// Calculates the length of the consumed messages for each Agent.
pub fn calc_consumed_len_statistics(&self) -> HashMap<String, usize> {
let mut data = HashMap::new();
for agent in self.agents.iter() {
data.insert(agent.name.clone(), agent.consumed.len());
}
data
}
/// Calculates the length of the produced messages for each Agent.
pub fn calc_produced_len_statistics(&self) -> HashMap<String, usize> {
let mut data = HashMap::new();
for agent in self.agents.iter() {
data.insert(agent.name.clone(), agent.produced.len());
}
data
}
fn emit_completed_simulation_debug_logging(&self) {
let queue_len_stats = self.calc_queue_len_statistics();
let consumed_len_stats = self.calc_consumed_len_statistics();
let avg_wait_stats = self.calc_avg_wait_statistics();
let produced_len_stats = self.calc_produced_len_statistics();
debug!("Queues: {:?}", queue_len_stats);
debug!("Consumed: {:?}", consumed_len_stats);
debug!("Produced: {:?}", produced_len_stats);
debug!("Average processing time: {:?}", avg_wait_stats);
}
/// Consume a message_bus of messages and disperse those messages to the agents.
fn disperse_bus_messages_to_agents(&mut self, mut message_bus: Vec<Message>) {
while let Some(message) = message_bus.pop() {
for agent in self.agents.iter_mut() {
if agent.name == message.clone().destination {
agent.push_message(message.clone());
}
if agent.name == message.clone().source {
agent.produced.push(message.clone());
}
}
}
}
/// An internal function used to wakeup sleeping Agents due to wake.
fn wakeup_agents_scheduled_to_wakeup_now(&mut self) {
for agent in self.agents.iter_mut() {
match agent.state {
AgentState::AsleepUntil(scheduled_wakeup) => {
if self.time >= scheduled_wakeup {
agent.state = AgentState::Active;
}
}
_ => (),
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand_distr::Poisson;
fn init() {
let _ = env_logger::builder().is_test(true).try_init();
}
#[test]
fn basic_periodic_test() {
init();
let mut simulation = Simulation::new(SimulationParameters {
agents: vec![
periodic_producing_agent("producer", 1, "consumer"),
periodic_consuming_agent("consumer", 1),
],
halt_check: |s: &Simulation| s.time == 5,
..Default::default()
});
simulation.run();
let produced_stats = simulation.calc_produced_len_statistics();
assert_eq!(produced_stats.get("producer"), Some(&5));
assert_eq!(produced_stats.get("consumer"), Some(&0));
let consumed_stats = simulation.calc_consumed_len_statistics();
assert_eq!(consumed_stats.get("producer"), Some(&0));
assert_eq!(consumed_stats.get("consumer"), Some(&4));
}
#[test]
fn starbucks_clerk() {
init();
let mut simulation = Simulation::new(SimulationParameters {
agents: vec![
Agent {
name: "Starbucks Clerk".to_owned(),
consumption_fn: |a: &mut Agent, t: DiscreteTime| {
debug!("{} looking for a customer.", a.name);
if let Some(last) = a.consumed.last() {
if last.completed_time? + 60 > t {
debug!("Sorry, we're still serving the last customer.");
return None;
}
}
if let Some(message) = a.queue.pop_front() {
if message.queued_time + 100 > t {
debug!("Still making your coffee, sorry!");
a.queue.push_front(message);
return None;
}
debug!("Serviced a customer!");
a.consumed.push(Message {
completed_time: Some(t),
..message
});
}
return None;
},
..Default::default()
},
poisson_distributed_producing_agent(
"Starbucks Customers",
Poisson::new(80.0).unwrap(),
"Starbucks Clerk",
),
],
starting_time: 1,
enable_queue_depth_telemetry: false,
halt_check: |s: &Simulation| s.time > 500,
});
simulation.run();
assert_eq!(Some(simulation).is_some(), true);
}
}