1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
#[cfg(test)]
mod tests;
// Rust implementation of:
//
// Simplex noise demystified
// Stefan Gustavson, Linköping University, Sweden (stegu@itn.liu.se), 2005-03-22
//
// https://github.com/stegu/perlin-noise/blob/master/simplexnoise.pdf
//
// https://web.archive.org/web/20210506195658/http://weber.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java
//
const SQRT3: f32 = 1.732_050_8; // f32::sqrt(3.0);
const F2: f32 = 0.5 * (SQRT3 - 1.0);
const G2: f32 = (3.0 - SQRT3) / 6.0;
const F3: f32 = 1.0 / 3.0;
const G3: f32 = 1.0 / 6.0; // Very nice and simple unskew factor, too
const GRAD3: [[f32; 3]; 12] = [
[1.0, 1.0, 0.0],
[-1.0, 1.0, 0.0],
[1.0, -1.0, 0.0],
[-1.0, -1.0, 0.0],
[1.0, 0.0, 1.0],
[-1.0, 0.0, 1.0],
[1.0, 0.0, -1.0],
[-1.0, 0.0, -1.0],
[0.0, 1.0, 1.0],
[0.0, -1.0, 1.0],
[0.0, 1.0, -1.0],
[0.0, -1.0, -1.0],
];
fn generate_perm_mod12(seed: u64) -> [usize; 512] {
use rand::{seq::SliceRandom, SeedableRng};
// random number generator with seed:
let mut rng: rand::rngs::StdRng = SeedableRng::seed_from_u64(seed);
let mut seq: Vec<_> = (0usize..256).collect();
seq.shuffle(&mut rng);
let mut perm = [0; 512];
// To remove the need for index wrapping, double the permutation table length
// mod 12 to lookup the gradients of the simplex corners
for i in 0..512 {
perm[i] = seq[i & 255] % 12;
}
perm
}
#[inline(always)]
fn fastfloor(x: f32) -> i32 {
if x > 0.0 {
x as i32
} else {
(x as i32) - 1
}
}
#[inline(always)]
fn dot2(x0: f32, y0: f32, x1: f32, y1: f32) -> f32 {
x0 * x1 + y0 * y1
}
#[inline(always)]
fn dot3(x0: f32, y0: f32, z0: f32, x1: f32, y1: f32, z1: f32) -> f32 {
x0 * x1 + y0 * y1 + z0 * z1
}
/// Simplex noise generator instance that keeps a permutation table internally.
pub struct Simplex {
seed: u64,
perm_mod12: [usize; 512],
}
impl Simplex {
/// Create a new simplex noise generator for the given seed value.
///
/// Creates a pre-computed permutation table using the seed value.
pub fn new(seed: u64) -> Self {
Self {
seed,
perm_mod12: generate_perm_mod12(seed),
}
}
/// Sample the noise function in 2D at the given coordinates.
///
/// For frequency, multiply the coordinates by the desired frequency.
pub fn sample2d(&self, x: f32, y: f32) -> f32 {
// Skew the input space to determine which simplex cell we're in
let s = (x + y) * F2; // Hairy factor for 2D
let i = fastfloor(x + s);
let j = fastfloor(y + s);
let t = ((i + j) as f32) * G2;
let x0 = (i as f32) - t; // Unskew the cell origin back to (x,y) space
let y0 = (j as f32) - t;
let x0 = x - x0; // The x,y distances from the cell origin
let y0 = y - y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
// Offsets for second (middle) corner of simplex in (i,j) coords
let (i1, j1) = if x0 > y0 {
(1, 0) // lower triangle, XY order: (0,0)->(1,0)->(1,1)
} else {
(0, 1) // upper triangle, YX order: (0,0)->(0,1)->(1,1)
};
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
let x1 = x0 - (i1 as f32) + G2; // Offsets for middle corner in (x,y) unskewed coords
let y1 = y0 - (j1 as f32) + G2;
let x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
let y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
let ii: usize = (i & 255) as usize;
let jj: usize = (j & 255) as usize;
let gi0 = self.perm_mod12[ii + self.perm_mod12[jj]];
let gi1 = self.perm_mod12[ii + i1 + self.perm_mod12[jj + j1]];
let gi2 = self.perm_mod12[ii + 1 + self.perm_mod12[jj + 1]];
// Calculate the contribution from the three corners
// double n0, n1, n2; // Noise contributions from the three corners
let mut t0 = 0.5 - x0 * x0 - y0 * y0;
let n0 = if t0 < 0.0 {
0.0
} else {
t0 *= t0;
t0 * t0 * dot2(GRAD3[gi0][0], GRAD3[gi0][1], x0, y0) // (x,y) of grad3 used for 2D gradient
};
let mut t1 = 0.5 - x1 * x1 - y1 * y1;
let n1 = if t1 < 0.0 {
0.0
} else {
t1 *= t1;
t1 * t1 * dot2(GRAD3[gi1][0], GRAD3[gi1][1], x1, y1)
};
let mut t2 = 0.5 - x2 * x2 - y2 * y2;
let n2 = if t2 < 0.0 {
0.0
} else {
t2 *= t2;
t2 * t2 * dot2(GRAD3[gi2][0], GRAD3[gi2][1], x2, y2)
};
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
n0 + n1 + n2
}
/// Sample the noise function in 3D at the given coordinates.
///
/// For frequency, multiply the coordinates by the desired frequency.
pub fn sample3d(&self, x: f32, y: f32, z: f32) -> f32 {
// Skew the input space to determine which simplex cell we're in
let s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
let i = fastfloor(x + s);
let j = fastfloor(y + s);
let k = fastfloor(z + s);
let t = (i + j + k) as f32 * G3;
let x0 = i as f32 - t; // Unskew the cell origin back to (x,y,z) space
let y0 = j as f32 - t;
let z0 = k as f32 - t;
let x0 = x - x0; // The x,y,z distances from the cell origin
let y0 = y - y0;
let z0 = z - z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
// Offsets for second corner of simplex in (i,j,k) coords
let i1;
let j1;
let k1;
// Offsets for third corner of simplex in (i,j,k) coords
let i2;
let j2;
let k2;
if x0 >= y0 {
if y0 >= z0 {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
// X Y Z order
else if x0 >= z0 {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
}
// X Z Y order
else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
} // Z X Y order
} else {
// x0<y0
if y0 < z0 {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
}
// Z Y X order
else if x0 < z0 {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
}
// Y Z X order
else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
let x1 = x0 - i1 as f32 + G3; // Offsets for second corner in (x,y,z) coords
let y1 = y0 - j1 as f32 + G3;
let z1 = z0 - k1 as f32 + G3;
let x2 = x0 - i2 as f32 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
let y2 = y0 - j2 as f32 + 2.0 * G3;
let z2 = z0 - k2 as f32 + 2.0 * G3;
let x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
let y3 = y0 - 1.0 + 3.0 * G3;
let z3 = z0 - 1.0 + 3.0 * G3;
// Work out the hashed gradient indices of the four simplex corners
let ii = (i & 255) as usize;
let jj = (j & 255) as usize;
let kk = (k & 255) as usize;
let gi0 = self.perm_mod12[ii + self.perm_mod12[jj + self.perm_mod12[kk]]];
let gi1 = self.perm_mod12[ii + i1 + self.perm_mod12[jj + j1 + self.perm_mod12[kk + k1]]];
let gi2 = self.perm_mod12[ii + i2 + self.perm_mod12[jj + j2 + self.perm_mod12[kk + k2]]];
let gi3 = self.perm_mod12[ii + 1 + self.perm_mod12[jj + 1 + self.perm_mod12[kk + 1]]];
// Calculate the contribution from the four corners
// let n0, n1, n2, n3;
// Noise contributions from the four corners
let mut t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0;
let n0 = if t0 < 0.0 {
0.0
} else {
t0 *= t0;
t0 * t0 * dot3(GRAD3[gi0][0], GRAD3[gi0][1], GRAD3[gi0][2], x0, y0, z0)
};
let mut t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1;
let n1 = if t1 < 0.0 {
0.0
} else {
t1 *= t1;
t1 * t1 * dot3(GRAD3[gi1][0], GRAD3[gi1][1], GRAD3[gi1][2], x1, y1, z1)
};
let mut t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2;
let n2 = if t2 < 0.0 {
0.0
} else {
t2 *= t2;
t2 * t2 * dot3(GRAD3[gi2][0], GRAD3[gi2][1], GRAD3[gi2][2], x2, y2, z2)
};
let mut t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3;
let n3 = if t3 < 0.0 {
0.0
} else {
t3 *= t3;
t3 * t3 * dot3(GRAD3[gi3][0], GRAD3[gi3][1], GRAD3[gi3][2], x3, y3, z3)
};
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
n0 + n1 + n2 + n3
}
/// Returns the seed value that was used to generate the permutation table.
pub fn seed(&self) -> u64 {
self.seed
}
}