## Description
> To make a library of functions that are frequently used for data anlaysis and machine learning tasks
## List of Functions and Structs
### lib_matrix
1. MatrixDeterminantF :
> determinant_f
x determinant_2
x determinant_3plus
> is_square_matrix
> round_off_f
> inverse_f
x identity_matrix
x zero_matrix
1. dot_product
2. element_wise_operation
3. matrix_multiplication
4. pad_with_zero
5. print_a_matrix
6. shape_changer
7. transpose
8. vector_addition
9. make_matrix_float
10. make_vector_float
11. round_off_f
12. unique_values
13. value_counts
14. is_numerical
15. min_max_f
16. type_of
17. element_wise_matrix_operation
18. matrix_vector_product_f
19. split_vector
20. split_vector_at
---
### lib_ml
1. MultivariantLinearRegression :
> multivariant_linear_regression
x generate_score
> batch_gradient_descent
x mse_cost_function
> hash_to_table
x train_test_split
x randomize
1. coefficient
2. convert_and_impute
3. covariance
4. impute_string
5. mean
6. read_csv
7. root_mean_square
8. simple_linear_regression_prediction
9. variance
10. convert_string_categorical
11. normalize_vector_f
12. logistic_function_f
13. log_gradient_f
14. cost_function_f (WIP)
15. gradient_descent
16. logistic_predict
17. randomize
18. train_test_split
19. binary_logistic_regression (WIP)
---
### lib_nn
1. LayerDetails :
> create_weights
> create_bias
> output_of_layer
1. activation_leaky_relu
2. activation_relu
3. activation_sigmoid
4. activation_tanh
---
### lib_string
1. StringToMatch :
> compare_percentage
x calculate
> clean_string
x char_vector
> compare_chars
> compare_position
----
### About the author
* Used Python, learning Rust
* Not a CS student, feedback appreciated
* rd2575691@gmail.com
---
### Vibliography ?
* For lib_nn : [nnfs.io](https://www.youtube.com/playlist?list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3)
* For Rust : [Crazcalm's Tech Stack](https://www.youtube.com/playlist?list=PLVhhUNGAUIQScqB26DdUq4n1Y2n3auM7X)
* Other blogs mentioned inside